Уравнение ртуть 1 и кислород

Получение кислорода

История открытия кислорода

Открытие кислорода ознаменовало новый период в развитии химии. С глубокой древности было известно, что для горения необходим воздух. Процесс горения веществ долгое время оставался непонятным. В эпоху алхимии широкое распространение получила теория флогистона, согласно которой вещества горят благодаря их взаимодействию с огненной материей, то есть с флогистоном, который содержится в пламени. Кислород был получен английским химиком Джозефом Пристли в 70-х годах XVIII века. Химик нагревал красный порошок оксида ртути (II), в итоге вещество разлагалось, с образованием металлической ртути и бесцветного газа:

Оксиды – бинарные соединения, в состав которых входит кислород При внесении тлеющей лучины в сосуд с газом она ярко вспыхивала. Ученый считал, что тлеющая лучина вносит в газ флогистон, и он загорается. Д. Пристли пробовал дышать полученным газом, и был восхищен тем, как легко и свободно им дышится. Тогда ученый и не предполагал, что удовольствие дышать этим газом предоставлено каждому. Результатами своих опытов Д. Пристли поделился с французским химиком Антуаном Лораном Лавуазье.

Имея хорошо оснащенную на то время лабораторию, А. Лавуазье повторил и усовершенствовал опыты Д. Пристли. А. Лавуазье измерил количество газа, выделяющееся при разложении определенной массы оксида ртути. Затем химик нагрел в герметичном сосуде металлическую ртуть до тех пор, пока она не превратилась в оксид ртути (II). Он обнаружил, что количество выделившегося газа в первом опыте равно газу, поглотившемуся во втором опыте. Следовательно, ртуть реагирует с каким-то веществом, содержащимся в воздухе. И это же вещество выделяется при разложении оксида. Лавуазье первым сделал вывод, что флогистон здесь совершенно ни при чем, и горение тлеющей лучины вызывает именно неизвестный газ, который в последствии был назван кислородом. Открытие кислорода ознаменовало крах теории флогистона!

Способы получения и собирания кислорода в лаборатории

Лабораторные способы получения кислорода весьма разнообразны. Существует много веществ, из которых можно получить кислород. Рассмотрим наиболее распространенные способы.

1) Разложение оксида ртути (II)

Одним из способов получения кислорода в лаборатории, является его получение по описанной выше реакции разложения оксида ртути (II). Ввиду высокой токсичности соединений ртути и паров самой ртути, данный способ используется крайне редко.

2) Разложение перманганата калия

Перманганат калия (в быту мы называем его марганцовкой) – кристаллическое вещество темно-фиолетового цвета. При нагревании перманганата калия выделяется кислород. В пробирку насыплем немного порошка перманганата калия и закрепим ее горизонтально в лапке штатива. Недалеко от отверстия пробирки поместим кусочек ваты. Закроем пробирку пробкой, в которую вставлена газоотводная трубка, конец которой опустим в сосуд- приемник. Газоотводная трубка должна доходить до дна сосуда-приемника. Ватка, находящаяся около отверстия пробирки нужна, чтобы предотвратить попадание частиц перманганата калия в сосуд-приемник (при разложении выделяющийся кислород увлекает за собой частички перманганата). Когда прибор собран, начинаем нагревание пробирки. Начинается выделение кислорода.

Уравнение реакции разложения перманганата калия:

2KMnO4 t° → K2MnO4 + MnO2 + O2↑

Как обнаружить присутствие кислорода? Воспользуемся способом Пристли. Подожжем деревянную лучину, дадим ей немного погореть, затем погасим, так, чтобы она едва тлела. Опустим тлеющую лучину в сосуд с кислородом. Лучина ярко вспыхивает! Газоотводная трубка была не случайно опущена до дна сосуда-приемника. Кислород тяжелее воздуха, следовательно, он будет собираться в нижней части приемника, вытесняя из него воздух. Кислород можно собрать и методом вытеснения воды. Для этого газоотводную трубку необходимо опустить в пробирку, заполненную водой, и опущенную в кристаллизатор с водой вниз отверстием. При поступлении кислорода газ вытесняет воду из пробирки.

Разложение пероксида водорода

Пероксид водорода – вещество всем известное. В аптеке оно продается под названием «перекись водорода». Данное название является устаревшим, более правильно использовать термин «пероксид». Химическая формула пероксида водорода Н2О2 Пероксид водорода при хранении медленно разлагается на воду и кислород. Чтобы ускорить процесс разложения можно произвести нагрев или применить катализатор.

Катализатор – вещество, ускоряющее скорость протекания химической реакции

Нальем в колбу пероксид водорода, внесем в жидкость катализатор. Катализатором может служить порошок черного цвета – оксид марганца MnO2. Тотчас смесь начнет вспениваться вследствие выделения большого количества кислорода. Внесем в колбу тлеющую лучину – она ярко вспыхивает. Уравнение реакции разложения пероксида водорода:

2H2O2 MnO2 → 2H2O + O2↑

Обратите внимание: катализатор, ускоряющий протекание реакции, записывается над стрелкой, или знаком «=», потому что он не расходуется в ходе реакции, а только ускоряет ее.

Разложение хлората калия

Хлорат калия – кристаллическое вещество белого цвета. Используется в производстве фейерверков и других различных пиротехнических изделий. Встречается тривиальное название этого вещества – «бертолетова соль». Такое название вещество получило в честь французского химика, впервые синтезировавшего его, – Клода Луи Бертолле. Химическая формула хлората калия KСlO3. При нагревании хлората калия в присутствии катализатора – оксида марганца MnO2, бертолетова соль разлагается по следующей схеме:

2KClO3 t°, MnO2 → 2KCl + 3O2↑.

Разложение нитратов

Нитраты – вещества, содержащие в своем составе ионы NO3⎺. Соединения данного класса используются в качестве минеральных удобрений, входят в состав пиротехнических изделий.

Нитраты – соединения термически нестойкие, и при нагревании разлагаются с выделением кислорода:

Обратите внимание, что все рассмотренные способы получения кислорода схожи. Во всех случаях кислород выделяется при разложении более сложных веществ.

Реакция разложения – реакция, в результате которой сложные вещества разлагаются на более простые В общем виде реакцию разложения можно описать буквенной схемой:

Реакции разложения могут протекать при действии различных факторов. Это может быть нагревание, действие электрического тока, применение катализатора. Существуют реакции, в которых вещества разлагаются самопроизвольно.

Получение кислорода в промышленности

В промышленности кислород получают путем выделения его из воздуха.

Воздух – смесь газов, основные компоненты которой представлены в таблице.

Сущность этого способа заключается в глубоком охлаждении воздуха с превращением его в жидкость, что при нормальном атмосферном давлении может быть достигнуто при температуре около -192°С. Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Ткип.

N2 = -196°С (при нормальном атмосферном давлении).

При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения, и, по мере его выделения, жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией жидкого воздуха.

  • В лаборатории кислород получают реакциями разложения
  • Реакция разложения – реакция, в результате которой сложные вещества разлагаются на более простые
  • Кислород можно собрать методом вытеснения воздуха или методом вытеснения воды
  • Для обнаружения кислорода используют тлеющую лучину, она ярко вспыхивает в нем
  • Катализатор – вещество, ускоряющее химическую реакцию, но не расходующееся в ней

Свойства оксида ртути и реакция ее разложения

Получение оксида ртути на примере опыта

Оксид ртути — это бинарное соединение кислорода и ртути, формула вещества — HgO. При нормальных условиях это твердое непрочное вещество, в зависимости от дисперсности бывает красного или желтого цвета — основной и важнейший оксид ртути. В природе оксид ртути практически не встречается, исключение — редкий минерал монтроидит. В 1774 году ученый Джозеф Пристли с помощью оксида ртути открыл кислород (реакция разложения оксида ртути).

Свойства оксида ртути

HgO желтого цвета — более химически активное вещество, разлагающееся при температуре 332 градусов Цельсия, краснеющее при нагревании. Красный оксид ртути распадается при 500 °С, а при нагревании меняет свой цвет на черный (эта реакция обратимая). Оксид ртути(II) малорастворим в воде и проявляет слабые основные свойства. Растворяется в концентрированных растворах щелочей, образуя при этом гидроксокомплексы. HgO желтого цвета взаимодействует с NH₃, образуя основания Миллона:

2HgO + NH₃ → [Hg₂N]OH · H₂O + Q

Это вещество вступает в реакцию с кислотами, образуя соответствующие соли. Применяется для получения ртути, а также используется при изготовлении некоторых видов гальванических элементов. Оксид ртути очень токсичен.

Получение оксида ртути (на примере опыта)

Оксид ртути (II) — полезный реактив, из которого в лабораторных условиях можно получить разнообразные соли ртути, к примеру хлорид или ацетат ртути(II). Ацетат ртути(II) используется в органическом синтезе (например, для получения изопропилата алюминия), а с помощью Hg­Cl₂ можно получить активированную амальгаму магния.

Для проведения опыта потребуется оборудование:

  • колба со шлифом;
  • пробирка;
  • обратный холодильник;
  • пористый стеклянный фильтр;
  • коническая колба.

Используемые реактивы:

  • азотная кислота (65%-ная);
  • ртуть;
  • едкий натр;
  • хлорид натрия или соляная кислота.

Техника безопасности во время проведения опыта

Оксиды азота (II) и (IV) ядовиты и канцерогенны, работать с ним необходимо очень осторожно. Соли ртути токсичны для людей и опасны для окружающей среды. Ядовитый нитрат ртути легко всасывается через кожу. Работать необходимо под тягой и с обратным холодильником, так как отходящие газы часто содержат пары ртути, опасные сами по себе.

Синтез следует проводить с крайней осторожностью. Смертельная доза нитрата ртути — от 0,2 до 0,4 гр.

Процесс синтеза оксида ртути

В пробирке взвешивают 30 г (0,15 моль) ртути. В колбу на 250 мл с обратным холодильником наливают 60 мл (0,9 моль) HNO₃. Пипеткой небольшими порциями ртуть добавляют в кислоту — тут же происходит реакция. Затем снова надевают обратный холодильник. Раствор нагревается и «закипает» от сильного выделения диоксида азота. По мере завершения реакции выделение бурого газа прекращается и раствор в колбе становится бесцветным. Уравнение реакции:

Hg + 4H­NO₃ => Hg(NO₃)₂ + 2NO₂ + 2H₂O

Чтобы предотвратить образование нитрата ртути(I), азотную кислоту берут в избытке. Жидкость остывает, и к ней добавляют HCl или NaCl — это проба на наличие ртути(I) Hg₂²⁺. При выпадении осадка Hg₂­Cl₂ в растворе присутствует ртуть (I). К раствору необходимо добавить немного азотной кислоты, затем нагреть. При отрицательной пробе на наличие ртути(I) раствор медленно выливают в 250 мл 4М раствора гидроксида натрия. При этом образуется оранжевый осадок оксида ртути(II) HgO, который нужно отфильтровать. Уравнение реакции:

Hg(NO₃)₂ + 2NaOH => HgO + 2NaNO₃ + H₂O

Продукт промывают водой на фильтре и высушивают до постоянной массы в эксикаторе над силикагелем. Выход оксида ртути (II) составляет 32,467 г.

При проведении опытов с оксидом ртути следует строго соблюдать правила техники безопасности. Здесь вы найдете безопасные опыты, которые можно проводить дома.

Обезвреживание отходов ртути

Весь фильтрат и промывные воды собирают в большой стакан, при необходимости реакцию раствора доводят до щелочной и добавляют избыток сульфида натрия. При этом образуется черный сульфид ртути HgS, который можно слить в канализацию.

Запрещено выливать в раковину растворимые соли ртути. Полученный оксид ртути хранится в плотно закрытых банках.

Реакция разложения оксида ртути

Получение кислорода в лабораторных условиях основано на разложении непрочных кислородсодержащих соединений, в частности бертолетовой соли, марганцовокислого калия, перекиси натрия и окиси ртути. При нагревании эти вещества разлагаются с выделением кислорода. Реакцию разложения оксида ртути можно продемонстрировать в опыте.

Чтобы провести такой эксперимент, необходимо взять пробирку из тугоплавкого стекла с согнутым нижним концом (длина 17 см, диаметр 1,5 см, длиной 3 см). В нижний конец насыпают 3—5 г красной окиси ртути. В укрепленную в штативе пробирку в наклонном положении вставляют резиновую пробку с отводной трубкой. По ней выделяющийся при нагревании кислород отводится в кристаллизатор с водой.

При нагревании красной окиси ртути до 500 °С из отводной трубки будет выделяться кислород, а внутренние стенки пробирки покроются капельками. Кислород плохо растворяется в воде, поэтому его собирают, вытесняя воду после полного удаления воздуха из прибора.

После завершения опыта необходимо вынуть отводную трубку из кристаллизатора с водой, погасить горелку и открыть пробку только после полного остывания пробирки (пары ртути очень ядовиты). Вместо пробирки можно использовать реторту с приемником для ртути. Из 10 г красной окиси ртути получают 500 мл кислорода. Уравнение реакции разложения оксида ртути:

2HgO = 2Hg + O₂ — 2×25 ккал.

Внимание! В эксперименте использованы токсичные и опасные для здоровья вещества. Не пытайтесь повторить этот опыт самостоятельно.

Химия, Биология, подготовка к ГИА и ЕГЭ

Ртуть — элемент побочной подгруппы второй группы шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum). Простое вещество ртуть — переходный металл, при комнатной температуре представляет собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты.
Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии

Исходя из электронного строения, можно сделать вывод, что для в соединениях ртуть будет проявлять степени окисления +2 и +1.

Физические свойства ртути:

  • при комнатной температуре — сербристо-серая жидкость , легко переходящая в газообразное состояние ;
  • электро- и теплопроводна;
  • очень высокая плотность вещества;

Как видите, все вышеперечисленные свойства — характеристики металлического вещества, хотя и в жидком состоянии.

Химические свойства ртути:

1) Реакция с кислородом (при нагревании >300 ° С): 2Hg + O2 = 2HgO (красного цвета);

2) реагирует с водородом, но только с атомарным ( так же при нагревании): Hg + 2H = HgH2 — гидрид ртути;

3) C неметаллами ( при нагревании): Hg + S = HgS

4) Взаимодействие с кислотами: с кислотами-не окислителями не взаимодействует

В ряду активности металлов ртуть стоит после водорода, поэтому в реакциях с кислотами-окислителями водород не выделяется:

Как видно из реакции, чаще всего в соединениях ртуть проявляет степень окисления + 2, но +1 тоже встречается, причем в очень необычном виде:

Степень окисления

Соединения ртути

+1

Оксид — не выделен;

Гидроксид — не выделен

Катион ртути — Hg2 2+ , соответственно, соль — нитрат ртути (I) — Hg2(NO3)2

Кстати, таких соединений ртути (I) немало — смотрите таблицу растворимости:

+2

Соединения ртути (II) намного чаще встречаются в заданиях школьного курса химии:
Оксид — HgO (относят к слабым основным или даже амфотерным оксидам);Гидроксид — не выделен

Что касается соединений ртути (II), то не смотря на то, что простое вещество ртуть — металл, в веществах HgS (черные или красные кристаллы) и HgJ2 (желтые кристаллы) cвязь ковалентная.

Связь ртуть-углерод в органических соединениях ртути самая прочная из всех известных металл-органических связей

Соединения ртути чрезвычайно ядовиты, соответственно, как и большинство других ядов, их часто используют в медицине:

  • хлорид ртути (I) (каломель) — слабительное;
  • меркузал и промеран — сильные мочегонные;
  • хлорид ртути (II), цианид ртути (II), амидохлорид ртути и жёлтый оксид ртути(II) — антисептики (в том числе в составе мазей).
  • Амальгаму серебра применяют в стоматологии в качестве материала зубных пломб.


источники:

http://melscience.com/RU-ru/articles/svojstva-oksida-rtuti-i-reakciya-ee-razlozheniya/

http://distant-lessons.ru/soedineniya-rtuti.html