Уравнение с 2n 1 в степени

Степенные или показательные уравнения.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a•a•…•a=a n

3. a n • a m = a n + m

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n ) m = a nm .

Получим 9 х+8 =(3 2 ) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10•4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n ) m = a nm .

4 х = (2 2 ) х = 2 2х

И еще используем одну формулу a n • a m = a n + m :

2 2х+4 = 2 2х •2 4

Добавляем в уравнение:

2 2х •2 4 — 10•2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х ,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2 :

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2 ) х = 3 2х

Получаем уравнение:
3 2х — 12•3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены. Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х ) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t1 = 9
t2 = 3

Возвращаемся к переменной x.

3 х = 9
3 х = 3 2
х1 = 2

Один корень нашли. Ищем второй, из t2:
t2 = 3 = 3 х
3 х = 3 1
х2 = 1
Ответ: х1 = 2; х2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Уравнения высших степеней в математике с примерами решения и образцами выполнения

Уравнение n-й степени с одним неизвестным:

Определение:

Уравнением n-й степени с одним неизвестным х называется уравнение

где — любые комплексные числа, а₀ ≠ 0, n— натуральное.

Изучение уравнения (1) в общем виде выходит за рамки школьного курса алгебры. В этой главе рассматриваются лишь некоторые свойства уравнения (1) и, кроме того, изучаются некоторые его частные виды.

Деление многочлена относительно х на ха

Теорема:

Остаток от деления многочлена относительно х на двучлен х — а равен значению этого многочлена при х, равном а.

Доказательство:

Разделим многочлен n-й степени

на двучлен х — а. Как известно, частным (неполным) в этом случае будет многочлен n— 1 степени

а остатком — некоторое число r. Так как делимое равно делителю, умноженному на частное, плюс остаток, то

Равенство (3) есть тождество, оно справедливо при любых значениях х. В частности, оно справедливо и при х = а. При х = а. первое слагаемое правой части равенства (3) обращается в нуль, а потому

Следствие:

Для того чтобы многочлен относительно х делился на двучлен х — а, необходимо и достаточно, чтобы число а было корнем этого многочлена, т. е. чтобы при х = а многочлен обращался в нуль.

Доказательство:

Необходимость:

Пусть многочлен (1) делится на х — а, т. е. остаток r равен нулю. Тогда на основании равенства (4)

т. е. а — корень многочлена (1).

Достаточность:

Пусть а — корень многочлена (1), т. е. имеет место равенство (5). Тогда на основании равенства (4) r = 0, т. е. многочлен (1) делится на двучлен х — а.

Рассмотрим вновь тождество (3). Если в правой части его раскрыть скобки и сделать приведение подобных членов, в результате должен получиться тот же многочлен, что и в левой части. На этом основании, приравнивая коэффициенты при одинаковых степенях х, получаем

Перепишем эти равенства так:

Полученные равенства показывают, что коэффициенты частного и остаток, т. е. , удобно вычислять последовательно одно за другим. Эти вычисления обычно располагают следующим образом:

Пример:

Решение:

Первый коэффициент 2 второй строки просто сносится (b₀ = а₀). Второй коэффициент 3 получен так:

Третий коэффициент 10 получен так:

и т. д. Неполное частное равно

Пример:

Найти значение многочлена

Решение:

Искомое значение многочлена равно остатку от деления многочлена на x + 2

В двух местах первой строки потребовалось вписать 0. Объясняется это тем, что делимое имеет следующий вид:

Обычно члены, коэффициенты которых равны нулю, пропускаются. Здесь их пропускать нельзя.

Составление уравнения n-й степени по его корням

Теорема:

Каковы бы ни были числа можно составить уравнение n-й степени, корнями которого будут эти числа и только они. Доказательство. Составим произведение

где a₀ — любое число, отличное от нуля. При x = x₁ двучлен x — x₁ обращается в нуль, значит, при этом значении х обращается в нуль и произведение (1). При х = х₂ обращается в нуль двучлен х — x₂, и опять произведение (1) обращается в нуль. То же самое происходит при х =x₃; х = хₙ.

Пусть теперь х = а, где a — число, отличное от x₁ x₂ , …., хₙ . Ни одна из разностей а— x₁ а— x₂ ,…..о— хₙ „ не равна нулю. Число а₀ тоже отлично от нуля. Значит, и произведение

отлично от нуля.

Таким образом, уравнение

имеет корнями x₁ x₂ , …., хₙ и только эти числа.

Раскрыв скобки и выполнив приведение подобных членов, получим в левой части уравнения многочлен n-й степени относительно х, т. е.

Корнями уравнения (2) являются числа x₁ x₂ , …., хₙ и только эти числа.

Возможно, что корни x₁ x₂ , …., хₙ уравнения (2) не все различны между собой. В этих случаях говорят, что уравнение (2) имеет кратные корни. Так, например, если x₁ = x₂ и отлично от других корней уравнения (2), число является корнем второй кратности уравнения (2). Левая часть уравнения (2) делится в этом случае на (xx₁ )³ и не делится на (х — x₁)³. Если x₁ = x₂ = x₃ и отлично от других корней уравнения (2), число x₁ является корнем третьей кратности уравнения (2). Левая часть уравнения (2) делится в этом случае на (х — x₁ )³ и не делится на (х— x₁ )⁴.

Вообще корнем кратности k уравнения (2) называется такое число а, что левая часть уравнения (2) делится на (х — а)ᵏ и не делится на

Пример:

Составить уравнение второй степени, корни которого

Решение:

. Положим а₀ = 3. Имеем

Пример:

Составить уравнение второй степени, корни которого x₁ = 1; х₂ =i.

Решение:

Положим

Пример:

Составить уравнение четвертой степени, корни которого i; —i; 1+i; 1-i

Решение:

Пример:

Составить уравнение третьей степени, корни которого x₁ = 1; х₂ = 1; х₃ = — 1.

Решение:

. Положим а₀ = 1.

Число единица является здесь корнем второй кратности,

Основная теорема алгебры и некоторые следствия из нее

Мы видели, что, выбрав произвольные п комплексных чисел, можно составить уравнение п-й степени, корнями которого будут выбранные числа. Коэффициенты этого уравнения могут при -этом оказаться как вещественными, так и мнимыми. Возникает следующий весьма важный вопрос.

Дано уравнение n-й степени с комплексными коэффициентами

Можно ли утверждать, что среди комплексных чисел найдется хоть одно число, являющееся корнем этого уравнения?

В свое время мы видели, что среди целых чисел нет числа, являющегося корнем уравнения 2х— 3 = 0 с целыми коэффициентами. Среди положительных чисел нет числа, являющегося корнем уравнения x+ 1 = 0 с положительными коэффициентами.

Среди рациональных чисел нет числа, являющегося корнем уравнения x² — 2 = 0 с рациональными коэффициентами. Среди действительных чисел нет числа, являющегося корнем уравнения x²+ 1 = 0 с действительными коэффициентами.

Понятно поэтому, сколь важное значение имеет поставленный вопрос. Ответ на него дает основная теорема алгебры.

Всякое уравнение n-й степени с любыми комплексными коэффициентами имеет комплексный корень.

Доказательство этой теоремы выходит за рамки школьной программы.

Теорема:

Всякий многочлен n-й степени с любыми комплексными коэффициентами может быть представлен и притом единственным образом в виде произведения п двучленов первой степени, т. е.

где a ≠ 0, n ≥ 1. (Два таких разложения, отличающиеся только порядком расположения множителей, не считаются различными.)

Доказательство:

Доказательство разбивается на две части. В первой части доказывается возможность представления многочлена n-й степени в виде произведения п двучленов первой степени, во второй—единственность такого представления.

Для n = 1 теорема верна, так как

Предположим, что теорема справедлива для многочленов степени n—1.

Согласно основной теореме алгебры многочлен имеет по крайней мере один корень x₁ и, следовательно, делится на х — х₁ т. е.

Для многочлена теорема справедлива. Значит,

Допустим, что имеется два таких разложения:

Так как коэффициенты при хⁿ в правой и левой частях равенств (2) и (3) должны быть равны, то

Приравниваем правые части равенств (2) и (3). После сокращения на а₀ имеем

Методом математической индукции докажем, что правая и левая части равенства (4) состоят из соответственно равных множителей, но, быть может, записанных в другом порядке.

Для n= 1 утверждение, очевидно, справедливо.

Пусть утверждение справедливо для произведений, состоящих из n—1 множителей. Докажем, что утверждение справедливо и для произведений, состоящих из n множителей.

Левая часть равенства (4) при x = x₁ обращается в нуль. Значит, при x = x₁ обращается в нуль и правая часть этого равенства, т. е.

Произведение равно нулю. Значит, хоть один из сомножителей равен нулю. Допустим, что В случае необходимости мы можем изменить нумерацию сомножителей так, чтобы первым был множитель, равный нулю. Тогда

Сократим равенство (4) на хx₁ получим

По допущению правая и левая части равенства (5) состоят из соответственно равных множителей, но, быть может, записанных в другом порядке. Приписав в каждую часть равенства (5) по одинаковому множителю хx₁ получим, что правая и левая части равенства (4) состоят из соответственно равных сомножителей.

Теорема доказана полностью.

некоторые из сомножителей правой части могут быть одинаковы. Обозначив различные из них, а буквами кратность их вхождения, получим

где все различны между собой

Представление левой части уравнения в виде (6) называется представлением левой части уравнения в канонической форме.

Теорема:

Всякое уравнение п-й степени с любыми комплексными коэффициентами имеет ровно п корней, среди которых могут быть и равные друг другу.

Доказательство:

где a₀ ≠ 0, n ≥ 0 Как доказано, левая часть может быть представлена в виде произведения n множителей первой степени. Таким образом, имеем

При x=x₁; х = х₂; х=хₙ левая часть уравнения превращается в нуль и, следовательно, х₁, х₂, …,xₙ— корни уравнения. Покажем, что никакое число а, отличное от х₁ х₂,…..хₙ, не может быть корнем этого уравнения.

Действительно, произведение а₀ (а — x₁) (а — х ₂ ,)… (а — x ₙ )не равно нулю, так как ни один из множителей его не равен нулю. Таким образом, корнями рассматриваемого уравнения являются числа x₁; х ₂ ;…; x ₙ и других корней нет.

Следствие:

Уравнение n-й степени имеет n корней, если каждый корень считать столько раз, какова его кратность.

Теорема:

Если уравнение n-й степени имеет действительные коэффициенты и мнимое число а + bi является корнем этого уравнения, то и сопряженное число а — bi является также корнем этого уравнения.

Доказательство:

Пусть мнимое число а + bi является корнем уравнения

с действительными коэффициентами. Требуется доказать, что сопряженное число а — bi также является корнем уравнения (7). Составим многочлен

Этот многочлен имеет действительные коэффициенты. Разделим левую часть уравнения (7) на многочлен (8). В частном получим многочлен n— 2 степени с действительными коэффициентами, в остатке многочлен степени не выше первой и тоже с действительными коэффициентами.

Так как делимое равно делителю, умноженному на частное плюс остаток, то

Положим в этом равенстве х = а + bi . Получим

так как и левая часть равенства и трехчлен при х = а + bi обращаются в нуль. Имеем

Так как b ≠ 0, то A = 0. Из первого уравнения системы (9) имеем В = 0. Выходит, что остаток Ах + В равен нулю, т. е.

При х = а — bi первый сомножитель правой части равенства (10) превращается в нуль, значит, и левая часть равенства тоже обращается в нуль. Значит, число а — bi является корнем уравнения (7).

Теорема:

Всякий многочлен n-й степени с действительными коэффициентами может быть представлен в виде произведения многочленов первой или второй степени с действительными коэффициентами.

Доказательство этой теоремы проводится методом математической индукции. Теорема, очевидно, справедлива для многочленов первой и второй степени. При этом многочлен второй степени либо имеет действительные корни и тогда разлагается на множители первой степени с действительными коэффициентами, либо он имеет два мнимых сопряженных корня, и тогда он на множители с действительными коэффициентами не разлагается.

Допустим, что теорема справедлива для многочленов n— 2 степени и многочленов n—1 степени. Докажем, что тогда она справедлива и для многочленов n-й степени.

Пусть — многочлен n-й степени с действительными коэффициентами.

Если этот многочлен имеет действительный корень x₁ то он представляется в виде произведения многочлена первой степени на многочлен n—1 степени с действительными коэффициентами, т. е.

Если же многочлен действительных корней не имеет, то он имеет мнимый корень а + bi и сопряженный с ним корень а — bi. В этом случае многочлен представляется в виде произведения трехчлена второй степени на многочлен n— 2 степени с действительными коэффициентами, т. е.

Так как теорема для многочленов п—1 степени и многочленов n— 2 степени справедлива, то она справедлива и для многочленов степени n.

Теорема Виета

легко получить теорему Виета для уравнений любой степени. Перепишем это равенство так:

К правой части этого равенства применим правило умножения двучленов, первые члены которых одинаковы (см. гл. VIII, § 5). Получаем

где имеют тот же смысл, что и в гл. VIII. Обозначим знаком f₁ сумму корней уравнения (1), т. е.

Знаком f₂ обозначим сумму всевозможных произведений корней, взятых по два. Подобный же смысл имеют знаки f₃, f₄, …, f . Тогда

Равенство (1) теперь можно переписать так:

Приравнивая коэффициенты при одинаковых степенях х в правой и левой частях равенства (2), получим

Последние равенства и выражают теорему Виета для уравнения любой степени. При n= 2, т. е. для уравнения получаем известный результат:

Пример:

Не решая уравнения , определить сумму квадратов его корней.

Решение:

Пусть х₁ x₂, х₃, — корни данного уравнения. Рассмотрим равенство

По теореме Виета

Полученный результат означает, что среди чисел х₁ x₂, х₃, имеются мнимые, иначе сумма квадратов их не могла бы быть отрицательной.

Предложенное уравнение нетрудно решить и подсчитать сумму квадратов корней непосредственно:

О решении уравнений высших степеней

Прежде всего возникает такой вопрос: можно ли для уравнений любой степени составить формулы для выражения корней уравнения через его коэффициенты, подобно известной формуле для квадратного уравнения? Оказывается, что это можно сделать для уравнений 3-й и 4-й степени, при этом формулы эти содержат столь сложные радикалы, что на практике ими предпочитают не пользоваться.

Что же касается уравнений выше 4-й степени, то доказано, что для них при помощи радикалов такие формулы составить нельзя.

В математике разработан ряд способов, дающих возможность вычислить любой корень любого уравнения с любой точностью. Один из таких способов разработан великим русским математиком, творцом неевклидовой геометрии Н. И. Лобачевским.

Ограничимся рассмотрением графического способа. Этот способ может применяться для вычисления действительных корней уравнений с действительными коэффициентами.

Пример:

Вычислить вещественные корни уравнения

Решение:

Построим график функции у = х³ — 2х— 5 (рис. 107). Имеем

Нетрудно видеть, что при x > 2,5 первое слагаемое х³ будет столь большим сравнительно с остальными, что у будет положительным числом.

По мере продвижения направо от х = 2,5 график будет подниматься кверху и, следовательно, больше пересекать ось Ох не будет.

Точно так же при х

Это означает, что точка 2,1 лежит правее корня, так как соответствующая ордината положительна (см. график).

Таким образом, 2 Вычисление рациональных корней уравнений с целыми коэффициентами

Теорема:

Для того чтобы несократимая дробь была корнем уравнения

с целыми коэффициентами, необходимо, чтобы р было делителем свободного члена аₙ, a q было делителем старшего коэффициента а₀.

Доказательство:

Пусть —корень уравнения (1), т. е. имеет место тождество

Умножим обе части тождества на qⁿ, получим

Из тождества (2) имеем

Правая часть равенства — целое число. Значит, целое.

По условию, дробь несократима, значит, ни одно простое число, входящее в р, в число q не входит. По этой причине ни одно простое число, входящее в р, не может входить и в qⁿ. Выходит, что аₙ делится на р.

Из тождества (2) имеем

Так как ни одно простое число, входящее в q, не входит в р, число может быть целым только тогда, когда а₀ делится на q.

Следствие:

Если уравнение имеет целые коэффициенты и старший из них равен единице, то рациональными корнями такого уравнения могут быть только целые числа.

Действительно, а₀ = 1, a q — делитель а₀ . Значит, q = ± 1, а тогда целое.

Следствие:

Целые корни уравнения с целыми коэффициент тами являются делителями свободного члена.

Пример:

Вычислить рациональные корни уравнения

Решение:

Свободный член равен 2. Поэтому для р возможны только следующие значения: 1, —1, 2 и —2.

Старший коэффициент равен 2. Поэтому для q возможны только следующие значения: 1, —1, 2, —2.

Составляя всевозможными способами несократимые дроби найдем, что рациональные корни данного уравнения, если они имеются, содержатся среди следующих чисел:

Подстановкой в уравнение легко выяснить, что из этих шести

чисел удовлетворяют уравнению 2, ,— 1.

Таким образом, уравнение имеет три рациональных корня:

Для испытания, является ли данное число корнем уравнения, удобно пользоваться правилом сокращенного деления многочлена на двучлен ха. Для данного примера эти испытания проводятся так:

1 не является корнем уравнения, так как при делении левой части уравнения на х — 1 в остатке получилось — 2.

Испытываем число 2

2 — корень уравнения. В результате деления оказалось, что

Поэтому для отыскания остальных корней данного уравнения достаточно решить уравнение

Ответ.

Пример:

Найти рациональные корни уравнения

Решение:

Старший коэффициент уравнения равен единице, поэтому рациональными корнями уравнения могут быть только целые числа.

Делители свободного члена суть: 1,2, — 1, — 2. Сразу видно,-что никакое положительное число не может быть корнем данного уравнения, так как при любом положительном значении х левая часть уравнения положительна. Остается испытать — 1 и — 2:

Ответ. Уравнение рациональных корней не имеет.

Полученный в последнем примере результат означает, что корни рассматриваемого уравнения иррациональные или мнимые.

Пример:

Решение:

Выясним прежде всего, не имеет ли уравнение рациональных корней. Испытанию подлежат два числа 1 и — 1:

x₁² = 1. Остальные корни данного уравнения являются корнями уравнения третьей степени х³ — х² + х —1=0:

x₂ = 1. Остальные корни данного уравнения являются корнями квадратного уравнения х² + 1 = 0.

Ответ. x₁ = x₂ = 1; х₃ = i; x₄= — 1.

Решение двучленных уравнений 3-й, 4-й и 6-й степени

Определение. Двучленным уравнением n-й степени называется уравнение вида Очевидно, что делением на a₀ такое уравнение сводится к уравнению Если коэффициенты уравнения действительны, то двучленное уравнение можно представить в виде хⁿ — аⁿ = 0 или хⁿ + aⁿ= 0 где а — положительное число.

В этом параграфе излагается решение двучленных уравнений с действительными коэффициентами при n= 3, 4 и 6.

Уравнение имеет один действительный и два мнимых сопряженных корня.

Уравнение имеет один действительный и два мнимых сопряженных корня.

Уравнение имеет два действительных и два мнимых сопряженных корня.

Уравнение имеет две пары мнимых сопряженных корней.

Уравнение распадается на два кубических двучленных уравнения. На основании рассмотренного в п. а)

Уравнение имеет два действительных и две пары мнимых сопряженных корней

Уравнение распадается на три квадратных уравнения. Решая их, получаем

Уравнение имеет три пары мнимых сопряженных корней.

Замечание. Пользуясь извлечением корня n-й степени из комплексного числа, можно решить двучленное уравнение хⁿ = а любой степени n при любой правой части а.

Корнями уравнения хⁿ = а являются все значения корня n-й степени из а.

Пример:

Решение:

Запишем правую часть уравнения в тригонометрической форме

Пусть кубический корень из —2 + 2i равен р (cos 0 +isin 0). Тогда имеем

отсюда (§ 9 гл. IX) имеем

Для получения всех значений корня достаточно k положить равным 0, 1, 2. При k = 0 имеем

Решение трехчленных уравнений

Определение:

Трехчленным уравнением называется уравнение вида

При n= 2 уравнение является биквадратным.

Решение трехчленного уравнения подстановкой хⁿ = у сводятся к квадратному уравнению ay² + by + с = 0 и двучленному уравнению n-й степени.

Пример:

Решение:

Положим x⁴ = у. Имеем

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Кубические уравнения. Метод деления в столбик. Алгебраические уравнения степени n. . Примеры *

Определение

Рассмотрим произвольное уравнение вида

\[a_nx^n+a_x^+\dots+a_1x+a_0=0 \qquad \qquad (1)\]

где \(a_n, a_,\dots,a_0\) – некоторые числа, причем \(a_n\ne 0\) , называемое алгебраическим уравнением (с одной переменной) \(n\) -ой степени.

Обозначим \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) . Таким образом, сокращенно уравнение \((1)\) можно записать в виде \(P_n(x)=0\) .

Замечание

Заметим, что квадратное уравнение — это алгебраическое уравнение, степень которого равна \(2\) , а линейное — степень которого равна \(1\) .
Таким образом, все свойства алгебраических уравнений верны и для квадратных уравнений, и для линейных.

Теорема

Если уравнение \((1)\) имеет корень \(x=x_0\) , то оно равносильно уравнению

где \(P_(x)\) – некоторый многочлен степени \(n-1\) .

Для того, чтобы найти \(P_(x)\) , необходимо найти частное от деления многочлена \(P_n(x)\) на \((x-x_0)\)
(т.к. \(P_n(x)=(x-x_0)\cdot P_(x)\) ).

Следствие: количество корней уравнения

Любое алгебраическое уравнение степени \(n\) может иметь не более \(n\) корней.

Замечание

В частности, квадратное уравнение действительно имеет всегда не более двух корней: два, один (или два совпадающих) или ни одного корня.

Для того, чтобы найти частное от деления одного многочлена на другой, удобно пользоваться следующим способом, который мы рассмотрим на примере.

Пример

Известно, что \(x=2\) является корнем уравнения \(2x^3-9x^2+x^4-x+6=0\) . Найдите частное от деления \(2x^3-9x^2+x^4-x+6\) на \(x-2\) .

Решение.
Будем делить многочлен на многочлен в столбик. Запишем

Заметим, что записывать слагаемые в делимом необходимо по убыванию их степеней: в данном случае сначала \(x^4\) , затем \(2x^3\) и т.д.
Подбирать слагаемые в частном будем таким образом, чтобы при вычитании уничтожить сначала четвертую степень, затем третью и т.д.
Т.к. делитель \(x-2\) состоит из двух слагаемых, то при делении в столбик будем сносить по два слагаемых.

Посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(x^4+2x^3\) полученного многочлена уничтожилось слагаемое \(x^4\,\) .
На \(x^3\) . Тогда после вычитания \(x^4+2x^3-x^3(x-2)\) останется \(4x^3\) . Снесем слагаемое \(-9x^2\) :

Теперь посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(4x^3-9x^2\) полученного многочлена уничтожилось слагаемое \(4x^3\) .
На \(4x^2\) : \(\quad 4x^3-9x^2-4x^2(x-2)=-x^2\) .
Опять снесем следующее слагаемое \(-x\) :

Рассуждая аналогично, определяем, что третье слагаемое в частном должно быть \(-x\)

Четвертое слагаемое в частном должно быть \(-3\) :

Таким образом, можно сказать, что \(x^4+2x^3-9x^2-x+6=(x-2)(x^3+4x^2-x-3)\) .

Замечание

1) Если \(x=x_0\) действительно является корнем уравнения, то после такого деления в остатке должен быть \(0\) . В противном случае это означает, что деление в столбик выполнено неверно.

2) Если многочлен делится без остатка (то есть остаток равен \(0\) ) на \(x+a\) , то он также будет делиться без остатка на \(c(x+a)\) для любого числа \(c\ne 0\) . Например, в нашем случае, если бы мы поделили многочлен, к примеру, на \(2x-4\) , то получили бы в частном \(\frac12 x^3+2x^2-\frac12x-\frac32\) .
Заметим, что также происходит и с числами: если мы разделим \(10\) на \(2\) , то получим \(5\) ; а если разделим \(10\) на \(3\cdot 2\) , то получим \(\frac53\) .

3) Деление в столбик помогает найти другие корни уравнения: теперь для того, чтобы найти остальные корни уравнения \(x^4+2x^3-9x^2-x+6=0\) , необходимо найти корни уравнения \(x^3+4x^2-x-3=0\) .
Поэтому рассмотрим несколько фактов, часто помогающих подобрать корни алгебраического уравнения.

Теорема

Если число \(x=1\) является корнем уравнения \((1)\) , то сумма всех коэффициентов уравнения равна нулю:

Доказательство

Действительно, так как \(x=1\) является корнем уравнения \((1)\) , то после подстановки \(x=1\) в него мы получим верное равенство. Так как \(1\) в любой степени равен \(1\) , то слева мы действительно получим сумму коэффициентов \(a_i\) , которая будет равна нулю.

Пример

У уравнения \(x^2-6x+5=0\) сумма коэффициентов равна нулю: \(1-6+5=0\) . Следовательно, \(x=1\) является корнем этого уравнения. Это можно проверить просто подстановкой: \(1^2-6\cdot 1+5=0\quad\Leftrightarrow\quad 0=0\) .

Теорема

Если число \(x=-1\) является корнем уравнения \((1)\) , то сумма коэффициентов при четных степенях \(x\) равна сумме коэффициентов при нечетных степенях \(x\) .

Доказательство

1) Пусть \(n\) – четное. Подставим \(x=-1\) :

\(a_n\cdot (-1)^n+a_\cdot (-1)^+a_\cdot (-1)^+\dots+a_1\cdot (-1)+a_0=0 \quad\Rightarrow\) \(a_n-a_+a_-\dots-a_1+a_0=0 \quad \Rightarrow\) \(a_n+a_+\dots+a_0=a_+a_+\dots+a_1\)

2) Случай, когда \(n\) – нечетное, доказывается аналогично.

Пример

В уравнении \(x^3+2x^2-8x+5=0\) сумма коэффициентов равна нулю:

Значит, число \(x=1\) является корнем данного уравнения.

Можно разделить в столбик \(x^3+2x^2-8x+5\) на \(x-1\) :

\[\begin x^3+2x^2-8x+5&&\negthickspace\underline<\qquad x-1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 + 3x -5\\[-3pt] 3x^2 — 8x\,\phantom<000>&&\\ \underline<3x^2 - 3x\,>\phantom<000>&&\\[-3pt] -5x + 5&&\\ \underline<-5x +5>&&\\[-3pt] 0&&\\ \end\]

Таким образом, \(x^3+2x^2-8x+5=(x-1)(x^2 + 3x -5)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2+3x-5=0\) .

Таким образом мы нашли все корни исходного уравнения.

Пример

В уравнении \(x^3-x^2+x+3=0\) сумма коэффициентов при четных степенях \(-1+3=2\) , а при нечетных: \(1+1=2\) . Таким образом, число \(x=-1\) является корнем данного уравнения.

Можно разделить в столбик \(x^3-x^2+x+3\) на \(x+1\) :

\[\begin x^3-\,x^2+ \ x+3\phantom<0>&&\negthickspace\underline<\qquad x+1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 -2x +3\\[-3pt] -2x^2 + x\phantom<0000>&&\\ \underline<-2x^2 -\! 2x>\,\phantom<000>&&\\[-3pt] 3x + 3&&\\ \underline<3x +3>&&\\[-3pt] 0&&\\ \end\]

Таким образом, \(x^3-x^2+x+3=(x+1)(x^2 — 2x +3)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2-2x+3=0\) .
Но это уравнение не имеет корней ( \(D ), значит, исходное уравнение имеет всего один корень \(x=-1\) .

Замечание

Подбор корней таким образом, деление в столбик и разложение многочлена на множители помогают найти корни уравнения.

Существует еще одна очень важная теорема, позволяющая подобрать рациональный корень алгебраического уравнения, если таковой имеется.

Теорема

Если алгебраическое уравнение

\[a_nx^n+a_x^+\dots+a_1x+a_0=0,\] где \(a_n, \dots, a_0\) — целые числа,
имеет рациональный корень \(x=\dfrac pq\) , то число \(p\) является делителем свободного члена \(a_0\) , а число \(q\) — делителем старшего коэффициента \(a_n\) .

Пример

Рассмотрим уравнение \(2x^4-5x^3-x^2-5x-3=0\) .

В данном случае \(a_0=-3, a_n=2\) . Делители числа \(-3\) — это \(\pm 1, \pm 3\) . Делители числа \(2\) – это \(\pm 1, \pm 2\) . Комбинируя из полученных делителей дроби, получаем все возможные варианты рациональных корней:

\[\pm 1, \ \pm \dfrac12, \ \pm 3, \ \pm\dfrac32\]

По предыдущим теоремам можно быстро понять, что \(\pm1\) не являются корнями. Подставив \(x=-\dfrac12\) в уравнение, получим:

\[2\cdot \dfrac1<16>+5\cdot \dfrac18-\dfrac 14+5\cdot \dfrac12-3=0 \quad \Leftrightarrow \quad 0=0\]

Значит, число \(x=-\frac12\) является корнем уравнения.

Можно перебрать остальные варианты: таким образом мы найдем еще один рациональный корень уравнения \(x=3\) . Значит, уравнение можно представить в виде

\[\left(x+\frac12\right)(x-3)\cdot Q_2(x)=0 \quad \text<или>\quad (2x+1)(x-3)\cdot P_2(x)=0\] (тогда \(P_2(x)=\frac12 Q_2(x)\) ). Заметим, что второй вид записи уравнения более удобный, т.к. нам не придется при делении в столбик работать с дробями.

После деления в столбик \(2x^4-5x^3-x^2-5x-3\) на \((2x+1)(x-3)=2x^2-5x-3\) :

получим, что \(P_2(x)=x^2+1\) . Данный многочлен не имеет корней, значит, уравнение имеет только два корня: \(x=-\frac12\) и \(x=3\) .

Замечание

Заметим, что если, пользуясь предыдущей схемой, не удалось подобрать рациональный корень уравнения, это вовсе не значит, что уравнение не имеет корней.
Например, уравнение \(x^3-2=0\) имеет корень — это \(x=\sqrt[3]2\) , и он не рациональный.
Для подбора иррациональных корней не существует универсального алгоритма.

Пример

Найдите корни уравнения \(4x^3-3x^2-\frac<23>6x-1=0\) .

Заметим, что в данном уравнении не все коэффициенты – целые числа (коэффициент при \(x\) равен \(-\frac<23>6\) ). Но мы можем преобразовать данное уравнение к нужному нам виду: необходимо умножить правую и левую части уравнения на \(6\) :

\[24x^3-18x^2-23x-6=0\]
Делители свободного члена: \(\pm 1, \pm 2, \pm 3, \pm 6\) .
Делители старшего коэффициента: \(\pm 1, \pm 2, \pm 3, \pm4, \pm 6, \pm 8, \pm 12, \pm 24\) .
Получилось достаточно много \(:)\)
Выпишем некоторые возможные рациональные корни уравнения:

\[\pm 1, \ \pm \dfrac12, \ \pm \dfrac13, \ \pm \dfrac 16, \ \pm\dfrac18, \ \pm2, \ \pm\dfrac23, \ \pm \dfrac14, \ \pm3\quad \text<\small<и т.д.>>\]

Перебирая варианты, убеждаемся, что \(\frac32\) подходит. Значит, многочлен \(24x^3-18x^2-23x-6\) должен без остатка поделиться на \(x-\frac32\) . Для удобства разделим на \(2(x-\frac32)=2x-3\) (чтобы не работать с дробями):

Таким образом, \(24x^3-18x^2-23x-6=(2x-3)(12x^2 +9x +2)\) . Уравнение \(12x^2 +9x +2=0\) в свою очередь корней не имеет. Значит, \(x=\frac32\) – единственный корень исходного уравнения.

Теорема

Любой многочлен \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) можно разложить на произведение множителей: линейных ( \(ax+b, a\ne 0\) ) и квадратичных ( \(cx^2+px+q, c\ne 0\) ) с отрицательным дискриминантом.

Следствие

Кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) всегда имеет как минимум один вещественный корень, т.к. его левую часть всегда можно представить как

Замечание

На самом деле, такой вывод можно сделать о любом алгебраическом уравнении нечетной степени. Но, как правило, в школьном курсе математики крайне редко встречаются уравнения степени выше \(4\) .

Задачи с алгебраическими уравнениями в ЕГЭ по математике встречаются из года в год, а потому освежить в памяти базовую теорию по данной теме непременно стоит всем учащимся. При этом практика показывает, что подобные задания вызывают определенные сложности у большинства выпускников. Поэтому, если одним из ваших слабых мест являются задачи ЕГЭ с системами линейных алгебраических уравнений и вы рассчитываете получить конкурентные баллы по итогам прохождения аттестационного испытания, повторите общую теорию. Однако найти источник, в котором весь необходимый базовый материал изложен доступно и понятно для учащихся с любым уровнем подготовки не так просто, как может показаться на первый взгляд. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы бывает довольно проблематично даже на просторах Интернета.

Для того чтобы ликвидировать пробелы в знаниях, рекомендуем обратиться к образовательному проекту «Школково». Вся базовая теория по теме «Алгебраические уравнения» систематизирована и изложена нашими специалистами на основе многолетнего опыта в максимально доступной форме. Ознакомившись с представленной информацией, выпускники смогут грамотно объяснять решение задач.

Для того чтобы учащиеся из Москвы или другого российского населенного пункта, посетившие образовательный портал «Школково», смогли легко и качественно подготовиться к ЕГЭ, мы не только в понятной форме изложили теорию алгебраических уравнений, но и подобрали соответствующие упражнения. Для каждого из них наши специалисты прописали подробный алгоритм решения и указали правильный ответ. Последовательно выполняя простые и более сложные упражнения по данной теме, учащиеся смогут отработать навык решения подобных задач. Перечень заданий в разделе «Каталог» постоянно дополняется и обновляется.

Изучить теоретический материал по теме «Алгебраические уравнения» и попрактиковаться в выполнении упражнений можно в режиме онлайн. При необходимости любое задание можно сохранить в «Избранное». Это позволит в дальнейшем вернуться к задаче или обсудить алгоритм ее решения с преподавателем.


источники:

http://lfirmal.com/uravneniya-vysshih-stepeney/

http://shkolkovo.net/theory/108