Уравнение с азотом и кислородом

Азот. Химия азота и его соединений

Положение в периодической системе химических элементов

Азот расположен в главной подгруппе V группы (или в 15 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение азота

Электронная конфигурация азота в основном состоянии :

Атом азота содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом азота может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному механизму. Таким образом, максимальная валентность азота в соединениях равна IV. Также характерная валентность азота в соединениях — III.

Степени окисления атома азота – от -3 до +5. Характерные степени окисления азота -3, 0, +1, +2, +3, +4, +5.

Физические свойства и нахождение в природе

Азот в природе существует в виде простого вещества газа N2. Нет цвета, запаха и вкуса. Молекула N2 неполярная, следовательно, в воде азот практически нерастворим.

Азот – это основной компонент воздуха (79% по массе). В земной коре азот встречается в основном в виде нитратов. Входит в состав белков, аминокислот и нуклеиновых кислот в живых организмах.

Строение молекулы

Связь между атомами в молекуле азота – тройная, т.к. у каждого атома в молекуле по 3 неспаренных электрона. Одна σ-связь (сигма-связь) и две — π-связи.

Структурная формула молекулы азота:

Структурно-графическая формула молекулы азота: N≡N.

Схема перекрывания электронных облаков при образовании молекулы азота:

Соединения азота

Типичные соединения азота:

Степень окисленияТипичные соединения
+5оксид азота (V) N2O5

азотная кислота HNO3

нитраты MeNO3

+4оксид азота (IV) NO2
+3оксид азота (III)

нитриты MeNO2

+2оксид азота (II) NO
+1оксид азота (I)
-3аммиак NH3

нитриды металлов MeN

бинарные соединения азота с неметаллами

Способы получения азота

1. Азот в лаборатории получают при взаимодействии насыщенных растворов хлорида аммония и нитрита натрия. Образующийся в результате реакции обмена нитрит аммония легко разлагается с образованием азота и воды. В колбу наливают раствор хлорида аммония, а капельную воронку раствор нитрита натрия. При приливании нитрита натрия в колбу начинается выделение азота. Собирают выделяющийся азот в цилиндр. Горящая лучинка в атмосфере азота гаснет.

Суммарное уравнение процесса:

Видеоопыт взаимодействия нитрита натрия с хлоридом аммония можно посмотреть здесь.

Азот также образуется при горении аммиака:

2. Наиболее чистый азот получают разложением азидов щелочных металлов.

Например , разложением азида натрия:

3. Еще один лабораторный способ получения азота — восстановление оксида меди (II) аммиаком при температуре

3CuO + 2NH3 → 3Cu + N2 + 3H2O

В промышленности азот получают, буквально, из воздуха. При промышленном производстве очень важно, чтобы сырье было дешевым и доступным. Воздуха много и он пока бесплатный.

Используются различные способы выделения азота из воздуха — адсорбционная технология, мембранная и криогенная технологии.

Адсорбционные методы разделения воздуха на компоненты основаны на разделения газовых сред в азотных установках лежит явление связывания твёрдым веществом, называемым адсорбентом, отдельных компонентов газовой смеси.

Основным принципом работы мембранных систем является разница в скорости проникновения компонентов газа через вещество мембраны. Движущей силой разделения газов является разница парциальных давлений на различных сторонах мембраны.

В основе работы криогенных установок разделения воздуха лежит метод разделения газовых смеси, основанный на разности температур кипения компонентов воздуха и различии составов находящихся в равновесии жидких и паровых смесей.

Химические свойства азота

При нормальных условиях азот химически малоактивен.

1. Азот проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами .

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000 о С), на электрической дуге (в природе – во время грозы) :

Процесс эндотермический, т.е. протекает с поглощением теплоты.

1.2. При сильном нагревании (3000 о С-5000 о С или действие электрического разряда) образуется атомарный азот, который реагирует с серой , фосфором, мышьяком, углеродом с образованием бинарных соединений:

2С + N2 → N≡C–C≡N

Молекулярный азот, таким образом, не реагирует с серой , фосфором, мышьяком, углеродом.

1.3. Азот взаимодействует с водородом при высоком давлении и высокой температуре, в присутствии катализатора. При этом образуется аммиак:

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами : с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.

Например , литий реагирует с азотом с образованием нитрида лития:

2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Например , азот окисляет гидрид лития:

Аммиак

Строение молекулы и физические свойства

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3 о :

У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:

Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск

ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Химические свойства аммиака

1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание . При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопыт растворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например , аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

Еще один пример : аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.

NH3 + HCl NH4Cl

Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов , образуя нерастворимые гидроксиды.

Например , водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.

Например , хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

Гидроксид меди (II) растворяется в избытке аммиака:

5. Аммиак горит на воздухе , образуя азот и воду:

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

6. За счет атомов водорода в степени окисления +1 аммиак может выступать в роли окислителя , например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием . С металлами реагирует только жидкий аммиак.

Например , жидкий аммиак реагирует с натрием с образованием амида натрия:

Также возможно образование Na2NH, Na3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3 + 2Al → 2AlN + 3H2

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например , аммиак окисляется хлором до молекулярного азота:

Пероксид водорода также окисляет аммиак до азота:

Оксиды металлов , которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например , оксид меди (II) окисляет аммиак:

2NH3 + 3CuO → 3Cu + N2 + 3H2O

Соли аммония

Соли аммония – это соли, состоящие из катиона аммония и аниона кислотного остатка .

Способы получения солей аммония

1. Соли аммония можно получить взаимодействием аммиака с кислотами . Реакции подробно описаны выше.

2. Соли аммония также получают в обменных реакциях между солями аммония и другими солями.

Например , хлорид аммония реагирует с нитратом серебра:

3. Средние соли аммония можно получить из кислых солей аммония . При добавлении аммиака кислая соль переходит в среднюю.

Например , гидрокарбонат аммония реагирует с аммиаком с образованием карбоната аммония:

Химические свойства солей аммония

1. Все соли аммония – сильные электролиты , почти полностью диссоциируют на ионы в водных растворах:

NH4Cl ⇄ NH4 + + Cl –

2. Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями , если в продуктах образуется газ, осадок или образуется слабый электролит.

Например , карбонат аммония реагирует с соляной кислотой. При этом выделяется углекислый газ:

Соли аммония реагируют с щелочами с образованием аммиака.

Например , хлорид аммония реагирует с гидроксидом калия:

NH4Cl + KOH → KCl + NH3 + H2O

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

3. Соли аммония подвергаются гидролизу по катиону , т.к. гидроксид аммония — слабое основание:

4. При нагревании соли аммония разлагаются . При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:

Если соль содержит анион-окислитель, то разложение сопровождается изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

При температуре 250 – 300°C:

При температуре выше 300°C:

Разложение бихромата аммония («вулканчик»). Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

Окислительхром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду. Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив. Температура плавления – почти 2300 градусов. Оксид хрома – очень устойчивое вещество, не растворяется даже в кислотах. Благодаря устойчивости и интенсивной окраске окись хрома используется при изготовлении масляных красок.

Видеоопыт разложения дихромата аммония можно посмотреть здесь.

Оксиды азота

Оксиды азотаЦветФазаХарактер оксида
N2O Оксид азота (I), закись азота, «веселящий газ»бесцветныйгазнесолеобразующий
NO Оксид азота (II)бесцветныйгазнесолеобразующий
N2O3 Оксид азота (III), азотистый ангидридсинийжидкостькислотный
NO2 Оксид азота (IV), диоксид азота, «лисий хвост»бурыйгазкислотный (соответствуют две кислоты)
N2O5 Оксид азота (V), азотный ангидридбесцветныйтвердыйкислотный

Оксид азота (I)

Оксид азота (I) – это несолеобразующий оксид . Малые концентрации закиси азота вызывают лёгкое опьянение (отсюда название — «веселящий газ»). При вдыхании чистого газа быстро развиваются состояние опьянения и сонливость. Закись азота обладает слабой наркотической активностью, в связи с чем в медицине её применяют в больших концентрациях. В смеси с кислородом при правильном дозировании (до 80 % закиси азота) вызывает хирургический наркоз.

Строение молекулы оксида азота (I) нельзя описать методом валентных связей. Так как оксид азота (I) состоит из двух, так называемых резонансных структур, которые переходят одна в другую:

Общую формулу в таком случае можно задать, обозначая изменяющиеся связи в резонансных структурах пунктиром:

Получить оксид азота (I) в лаборатории можно разложением нитрата аммония:

Химические свойства оксида азота (I):

1. При нормальных условиях оксид азота (I) инертен. При нагревании проявляет свойства окислителя . Оксид азота (I) при нагревании окисляет водород, аммиак, металлы, сернистый газ и др. При этом азот восстанавливается в простое вещество.

N2O + Mg → N2 + MgO

Еще пример : оксид азота (I) окисляет углерод и фосфор при нагревании:

2. При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя.

Например , N2O окисляется раствором перманганата в серной кислоте:

Оксид азота (II)

Оксид азота (II) – это несолеобразующий оксид. В нормальных условиях это бесцветный ядовитый газ, плохо растворимый в воде. На воздухе коричневеет из-за окисления до диоксида азота. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Способы получения.

1. В лаборатории оксид азота (II) получают действием разбавленной азотной кислоты (30%) на неактивные металлы.

Например , при действии 30 %-ной азотной кислоты на медь образуется NO:

Также NO можно получить при окислении хлорида железа (II) или иодоводорода азотной кислотой:

3FeCl2 + NaNO3 + 4HCl → 3FeCl3 + NaCl + NO + 2H2O

2HNO3 + 6HI → 2NO + I2 + 4H2O

2. В природе оксид азота (II) образуется из азота и кислорода под действием электрического разряда, например, во время грозы:

3. В промышленности оксид азота (II) получают каталитическим окислением аммиака :

Химические свойства.

1. Оксид азота (II) легко окисляется под действием окислителей .

Например , горит в атмосфере кислорода:

Оксид азота (II) легко окисляется под действием хлора или озона:

2NO + Cl2 → 2NOCl

2. В присутствии более сильных восстановителей проявляет свойства окислителя . В атмосфере оксида азота (II) могут гореть водород, углерод и т.п.

Например , оксид азота (II) окисляет водород и сернистый газ:

Оксид азота (III)

Оксид азота (III), азотистый ангидрид – кислотный оксид . За счет азота со степенью окисления +3 проявляет восстановительные и окислительные свойства. Устойчив только при низких температурах, при более высоких температурах разлагается.

Способы получения: м ожно получить при низкой температуре из оксидов азота:

Химические свойства:

1. Оксид азота (III) взаимодействует с водой с образованием азотистой кислоты:

2. Оксид азота (III) взаимодействует с основаниями и основными оксидами :

Например , оксид азота (III) реагирует с гидроксидом и оксидом натрия с образованием нитрита натрия и воды:

Оксид азота (IV)

Оксид азота (IV) — бурый газ. Очень ядовит! Для NO2 характерна высокая химическая активность.

Способы получения.

1. Оксид азота (IV) образуется при окислении оксида азота (I) и оксида азота (II) кислородом или озоном:

2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.

Например , при действии концентрированной азотной кислоты на медь:

3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.

Например , при разложении нитрата серебра:

Химические свойства.

1. Оксид азота (IV) реагирует с водой с образованием двух кислот — азотной и азотистой:

Если растворение NO2 в воде проводить в избытке кислорода , то образуется только азотная кислота:

Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3 и NO:

2. При растворении оксида азота (IV) в щелочах образуются нитраты и нитриты:

В присутствии кислорода образуются только нитраты:

3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят фосфор , уголь , сера , оксид серы (IV) окисляется до оксида серы (VI):

4. Оксид азота (IV) димеризуется :

Оксид азота (V)

N2O5 – оксид азота (V), ангидрид азотной кислоты – кислотный оксид.

Получение оксида азота (V).

1. Получить оксид азота (V) можно окислением диоксида азота :

2. Еще один способ получения оксида азота (V) – обезвоживание азотной кислоты сильным водоотнимающим веществом, оксидом фосфора (V) :

Химические свойства оксида азота (V).

1. При растворении в воде оксид азота (V) образует азотную кислоту:

2. Оксид азота (V), как типичный кислотный оксид, взаимодействует с основаниями и основными оксидами с образованием солей-нитратов.

Например , оксид азота (V) реагирует с гидроксидом натрия:

Еще пример : оксид азота (V) реагирует с оксидом кальция:

3. За счет азота со степенью окисления +5 оксид азота (V) – сильный окислитель .

Например , он окисляет серу:

4. Оксид азота (V) легко разлагается при нагревании (со взрывом):

Азотная кислота

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например , концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

2. В промышленности азотную кислоту получают из аммиака . Процесс осуществляется стадийно.

1 стадия. Каталитическое окисление аммиака.

2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

Химические свойства

Азотная кислота – это сильная кислота . За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства .

1. Азотная кислота практически полностью диссоциирует в водном растворе.

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами .

Например , азотная кислота взаимодействует с оксидом меди (II):

Еще пример : азотная кислота реагирует с гидроксидом натрия:

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).

Например , азотная кислота взаимодействует с карбонатом натрия:

4. Азотная кислота частично разлагается при кипении или под действием света:

5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):

HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

Таблица . Взаимодействие азотной кислоты с металлами.

Азотная кислота
КонцентрированнаяРазбавленная
с Fe, Al, Crс неактивными металлами и металлами средней активности (после Al)с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al)с металлами до Al в ряду активности, Sn, Fe
пассивация при низкой Тобразуется NO2образуется N2O образуется NO образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например , азотная кислота окисляет серу, фосфор, углерод, йод:

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором . Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

7. Концентрированная а зотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например , азотная кислота окисляет оксид серы (IV):

Еще пример : азотная кислота окисляет йодоводород:

Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.

3С + 4HNO3 → 3СО2 + 4NO + 2H2O

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.

Например , сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

При нагревании до серной кислоты:

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция»).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Азотистая кислота

Азотистая кислота HNO2 — слабая, одноосновная, химически неустойчивая кислота.

Получение азотистой кислоты.

Азотистую кислоту легко получить вытеснением из нитритов более сильной кислотой.

Например , соляная кислота вытесняет азотистую кислоту из нитрита серебра:

AgNO2 + HCl → HNO2 + AgCl

Химические свойства.

1. Азотистая кислота HNO 2 существует только в разбавленных растворах, при нагревании она разлагается :

без нагревания азотистая кислота также разлагается :

2. Азотистая кислота взаимодействует с сильными основаниями .

Например , с гидроксидом натрия:

3. За счет азота в степени окисления +3 азотистая кислота проявляет слабые окислительные свойства . Окислительные свойства HNO2 проявляет только при взаимодействии с сильными восстановителями.

Например , HNO2 окисляет иодоводород:

2HNO2 + 2HI → 2NO + I2 + 2H2O

Азотистая кислота также окисляет иодиды в кислой среде:

Азотистая кислота окисляет соединения железа (II):

4. За счет азота в степени окисления +3 азотистая кислота проявляет сильные восстановительные свойства . Под действием окислителей азотистая кислота переходит в азотную.

Например , хлор окисляет азотистую кислоту до азотной кислоты:

Кислород и пероксид водорода также окисляют азотистую кислоту:

Соединения марганца (VII) окисляют HNO2:

Соли азотной кислоты — нитраты

Нитраты металлов — это твердые кристаллические вещества. Большинство очень хорошо растворимы в воде.

1. Нитраты термически неустойчивы , причем все они разлагаются на кислород и соединение, характер которого зависит от положения металла (входящего в состав соли) в ряду напряжений металлов:

  • Нитраты щелочных и щелочноземельных металлов ( до Mg в электрохимическом ряду ) разлагаются до нитрита и кислорода.

Например , разложение нитрата натрия:

Исключение – литий .

Видеоопыт разложения нитрата калия можно посмотреть здесь.

  • Нитраты тяжелых металлов ( от Mg до Cu, включая магний и медь ) и литий разлагаются до оксида металла, оксида азота (IV) и кислорода:

Например , разложение нитрата меди (II):

  • Нитраты малоактивных металлов ( правее Cu ) – разлагаются до металла, оксида азота (IV) и кислорода.

Например , нитрат серебра:

Исключения:

Нитрит железа (II) разлагается до оксида железа (III):

Нитрат марганца (II) разлагается до оксида марганца (IV):

2. Водные растворы не обладают окислительно-восстановительными свойствами, расплавы – сильные окислители .

Например , смесь 75% KNO3, 15% C и 10% S называют «черным порохом»:

Соли азотистой кислоты — нитриты

Соли азотистой кислоты устойчивее самой кислоты, и все они ядовиты. Поскольку степень окисления азота в нитритах равна +3, то они проявляют как окислительные свойства, так и восстановительные.

Кислород, галогены и пероксид водорода окисляют нитриты до нитратов:

Лабораторные окислители — перманганаты , дихроматы — также окисляют нитриты до нитратов:

В кислой среде нитриты выступают в качестве окислителей .

При окислении йодидов или соединений железа (II) нитриты восстанавливаются до оксида азота (II):

При взаимодействии с очень сильными восстановителями ( алюминий или цинк в щелочной среде) нитриты восстанавливаются максимально – до аммиака:

Смесь нитратов и нитритов также проявляет окислительные свойства. Например , смесь нитрата и нитрита калия окисляет оксид хрома (III) до хромата калия:

Реакция взаимодействия азота и кислорода

Реакция взаимодействия азота и кислорода

Уравнение реакции взаимодействия азота и кислорода:

Реакция взаимодействия азота и кислорода.

В результате реакции образуется оксид азота (II).

В ходе реакции используется катализатор: платина или оксид марганца (IV).

Реакция протекает при условии: при температуре около 1200-1300 °C, при избыточном давлении и наличии катализатора, либо при температуре более 2000 °C и в электрическом разряде.

В природе реакция протекает в атмосфере при грозовых разрядах.

Термохимическое уравнение реакции взаимодействия азота и кислорода:

O2 + N2 = 2NO – 180,9 кДж; ΔH 0 298 = 90,45 кДж/моль.

Формула для поиска по сайту: O2 + N2 → 2NO.

§ 3. Кислородные соединения азота

Для азота известны окислы, по составу формально отвечающие всем валентностям от . единицы до пяти. Их формулы и названия сопоставлены ниже:

Азотный ангидрид пpeдcтaвляeт собой твердое вещество, а остальные окислы при обычных условиях газообразны.

1) За исключением NO2 , все окислы азота ядовиты. При взаимодействии с раскаленной медью они полностью разлагаются, образуя СuО и N2 . По количеству окиси меди и азота может быть установлена формула исходного окисла.

Закись азота может быть получена разложением азотнокислого аммония, протекающим около 200 °С по уравнению:

Структура молекулы N2 O соответствует формуле N≡N = O. 3акись азота представляет собой бесцветный газ (т. пл. –91 °С, т. кип. –89°С) со слабым приятным запахом. В воде она довольно хорошо растворима, но химически с ней не взаимодействует. Выше 500°С закись азота разлагается по реакции:

Поэтому при повышенных температурах она действует как сильный окислитель. Например, тлеющая лучина вспыхивает в ней.

Так как температура человеческого тела далеко недостаточна Для разложения N2 O, этот газ, поддерживающий горение, дыхания не поддерживает. Вдыхание закиси азота в смеси с воздухом вызывает характерное состояние опьянения, сопровождающееся значительным ослаблением болевых ощущений. На этом основано использование N2 O при операциях в качестве наркотика.

2) Молекула N2 O линейна [d(NN) = 1,13 А, d(N0) = 1,19 А]. Закись азота является постоянной составной частью воздуха (0,00005% по объему). Один объем воды поглощает при 0°С около 1,3, а при 25 °С – 0, 6 объема N2 O.

Образование окиси азота из элементов при обычных условиях не происходит. Лишь примерно с 1200 °С начинает заметно протекать обратимая реакция:

Как видно из рис. 117, около 1500°С равновесие еще почти нацело смещено влево. Устанавливается оно при этих условиях чрезвычайно медленно: для достижения равновесного состояния требуется30 часов. Напротив, более высоким температурам отвечает не только большее содержание N0 в газовой смеси, но и несравненно быстрейшее достижение равновесия, которое при 3000°С устанавливается за миллионные дбли секунды. По Этим причинам NO всегда образуется в атмосфере при грозовьц разрядах.

Несмотря на эндотерйичность окиси азота, при обычных условиях она вполне устойчива. В лабораториях ее чаще всего получают по реакции:

Окись азота представляет собой бес цветный газ (т. пл. –164 °С, т. кип. –151°С), сравнительно малорастворимый в воде и химически с ней не взаимодействующий. Свой кислород она отдает лишь с трудом. Поэтому горящая лучина в атмосфере NO гаснет.

Наиболее характерны для окиси азота реакции присоединения. Так, при взаимодействии ее с хлором по реакции

образуется хлористый нитрозил (Сl–N = O), представляющий собой желтый газ (т. пл. – 64°С, т. кип. –6°С). Непосредственно соединяется NO и с кислородом. Известен также ряд комплексных соединений, содержащих NO во внутренней сфере.

3) Молекула NO характеризуется расстоянием d(NO) = 1,15 А и очень малой полярностью (длина диполя 0,03 А). Сто объемов воды растворяют при 0°С около 7 объемов окиси азота. В жидком и твердом состояниях она имеет синий цвет.

4) Если подсчитать общее число внешних электронов в молекуле NO, то получается цифра 11 (5 у азота и 6 у кислорода). Так как валентная связь осуществляется электронной парой, последняя должна быть системой более устойчивой, чем неспаренный электрон. Можно поэтому ожидать, что молекулы с нечетным числом электронов («нечетные» молекулы) будут склонны к димеризации (т. е. попарному сочетанию). Как правило, это и наблюдается уже при обычных условиях. К очень немногочисленным исключениям относится окись азота, проявляющая заметные признаки димеризации по схеме

лишь при низких температурах. В жидком состоянии при –163 °С содержание молекул N2 O2 достигает 95, а твердая окись азота состоит, по–видимому, уже только из таких молекул.

Спокойно протекающая реакция соединения NO с кислородом воздуха ведет к образованию двуокиси азота по уравнению:

Двуокись азота представляет собой бурый газ, легко сгущающийся в жидкость, кипящую при +21 °С. Будучи охлаждена до –11 °С, жидкость эта застывает в бесцветную кристаллическую массу. Определение молекулярного веса по плотности пара дает цифры, лежащие между простым (14 + 2 ·16 = 46) и удвоенным (92) его значениями, причем цифры эти зависят от температуры опыта, уменьшаясь при ее повышении и увеличиваясь при понижении.

5) Реакция присоединения кислорода к NO особенно интересна тем, что она является одним из очень немногих известных случаев, когда при повышении температуры химический процесс не только не ускоряется, но даже несколько замедляется. Объяснение этой аномалии скорости исходит из того, что в реакцию вступают лишь димерные молекулы N2 O2 , вероятность возникновения которых с повышением температуры очень быстро уменьшается.

Такие результаты обусловлены наличием равновесия между молекулами двуокиси азота (NO2 ) и азотноватой окиси (N2 O4 ). Результаты определения молекулярного веса около 140 °С показывают, что при этих условиях в газе имеются только молекулы двуокиси азота, тогда как при более низких температурах они частично соединяются попарно, образуя молекулы N2 O4 . Так как процесс образования из нейтральных молекул одного и того же вещества более сложных частиц с удвоенным, утроенным и т. д. молекулярным весом называется полимеризацией, можно сказать, что ниже 140 °С NO2 частично полимеризуется (точнее – димеризуется) в N2 O4 . Это происходит тем в большей степени, чем ниже температура, и вблизи точки замерзания (–11°С) вещество состоит уже исключительно из молекул N2 O4 . Напротив, при нагревании азотноватой окиси она диссоциирует на простые молекулы.

Каждой промежуточной между –11 °С и +140 с С температуре отвечает определенное состояние равновесия обратимой реакции:

Положения этого равновесия при различных температурах показаны на рис. 118. Так как N2 O4 бесцветна, a NO2 имеет красно–бурый цвет, за смещением равновесия при нагревании или охлаждении газовой смеси легко следить по изменению ее окраски.

Склонность молекул O = N = O к взаимодействию друг с другом обусловлена наличием в каждой из них одного непарного электрона (при атоме азота). Сочетание двух таких электронов и создает связь N–N в молекуле N2 O4 . Неустойчивость последней является следствием непрочности этой связи. Пространственное строение молекул NO2 и N2 O4 показано на рис. 119.

Двуокись азота является очень сильным окислителем. Уголь, сера, фосфор и т. п. энергично сгорают в ней. С парами многих органических веществона дает взрывчатые смеси.

6) Молекула NO2 характеризуется малой полярностью (длина диполя 0,08А). Выше 140 °С реакция образования двуокиси азота из N0 и кислорода становится заметно обратимой. Положения ее равновесия при различных температурах показаны на рис. 120. Как видно из последнего, выше 620 °С двуокись азота под обычным давлением существовать уже не может.

Взаимодействие NO2 с NO по обратимой реакции

ведет к частичному образованию азотистого ангидрида (N2 O3 ), который при охлаждении системы может быть получен в виде синей жидкости. Строение азотистого ангидрида выражается формулой O = N–О–N = O. В обычных условиях он неустойчив и равновесие приведенной выше реакции сильно смещено влево.

Растворение NO2 (или N2 O4 ) в воде сопровождается образованием азотной (HNO3 ) и азотистой (HNO2 ) кислот:

Тогда как азотная кислота в растворе вполне устойчива, азотистая легко распадается по обратимой реакции:

поэтому практически взаимодействие NO2 с водой идет по уравнению:

Если растворение двуокиси азота вести в присутствии избытка кислорода, то выделяющаяся NO окисляется им до NO2 . При этих условиях можно полностью перевести двуокись азота в азотную кислоту по суммарной схеме:

Подобным же образом (с образованием солей HNO3 ) протекает растворение NO2 в щелочах при наличии избытка кислорода. Напротив, в отсутствие последнего по реакции, например

образуется смесь солей азотной и азотистой кислот (в отличие от самой HNO2 соли ее в растворе устойчивы).

Соли азотистой кислоты называются азотистокислыми или нитритами. Подобно самому аниону NO2 , большинство их бесцветно. Почти все нитриты хорошо растворимы в воде (труднее других – AgNO2 ). Чаще всего встречается в практике NaNO2 , который получают обычно из окислов азота по реакции:

Сама HNO2 известна только в разбавленных водных растворах. По силе она лишь немного превышает уксусную кислоту.

Наиболее характерны для азотистой кислоты сильно выраженные окислительные свойства, причем восстанавливается она в большинстве случаев до NO. С другой стороны, действием сильных окислителей азотистая кислота может быть окислена до азотной. Типичные примеры характерных для нее окислительно–восстановительных процессов приводятся ниже:

Обе эти реакции протекают в кислой среде.

7) Для азотистой кислоты (K = 5 ·10 – 4 ) вероятно наличие двух способных переходить друг в друга структур:

Нитриты активных металлов (например, NaNO2 ) построены, по–видимому, в соответствии с первой из них, нитриты малоактивных (например, AgNO2 ) – со второй. Органические производные известны для обеих форм HNO2 .

Основной продукт взаимодействия NO2 с водой – азотная кислота является одним из важнейших химических соединений. Она потребляется при выработке взрывчатых веществ, органических красителей, пластических масс и в ряде других производств. Для получения азотной кислоты могут быть использованы три технических метода, причем исходными продуктами служат соответственно: а) аммиак, б) воздух и в) селитра.

Сущность первого метода заключается в каталитическом окислении аммиака кислородом воздуха. Как было выяснено еще в 1900 г., при быстром пропускании смеси NH3 с избытком воздуха над платиновым катализатором (нагретым до 800 °С) по реакции

образуется окись азота. Последняя переводится затем в NO2 и HNO3 . Каталитическое окисление аммиака является в настоящее время основным методом получения азотной кислоты.

8) Схема установки для окисления аммиака показана на рис. 121 (А –теплообменник). Катализатор из сплава платины с 5–10% родия оформляют в виде тонкой сетки, сквозь которую ‘ и продувается смесь исходных газов. На практике пользуются смесью аммиака с воздухом, содержащей не более 12%

NH3 по объему. Максимальный выход окиси азота составляет около 98% от теоретического.

Второй метод (т. н. дуговой) – получение азотной кислоты «сжиганием воздуха»–был разработан в 1905 г. Как видно из рис. 117, более или менее выгодное положение равновесия синтеза NO из элементов достигается лишь при очень высоких температурах. С другой стороны, устанавливается оно при этих условиях практически моментально. В связи с этим задача.технического осуществления синтеза NO формулировалась следующим образом: необходимо было изыскать способ нагреть воздух до возможно высокой температуры и затем очень быстро охладить газовую смесь ниже 1200°С с тем, чтобы не дать возможности образовавшейся окиси азота распасться обратно на азот и кислород.

При разрешении этой задачи в качестве нагревателя была использована электрическая дуга, дающая температуры около 4000°С. Если такую дугу поместить между полюсами сильного электромагнита, то пламя ее образует огненный диск. При быстром пропускании сквозь него струи воздуха последний в момент соприкосновения с пламенем очень сильно нагревается, а затем тотчас же охлаждается ниже 1200°С. В процессе дальнейшего охлаждения газовой смеси N0 присоединяет кислород с образованием NO2 , из которой затем и может быть получена азотная кислота.

Хотя при техническом осуществлении дугового метода выход NO составляет лишь около 2% по объему, однако это не играет особой роли ввиду бесплатности исходного сырья – воздуха. Гораздо более важным недостатком дугового метода является большой расход электроэнергии. Именно поэтому его промышленное значение в настоящее время невелико.

Наконец, третий способ получения азотной кислотыиз селитры – являлся в прошлом единственным, но теперь почти не имеет промышленного значения. В его основе лежит взаимодействие селитры с концентрированной серной кислотой:

Реакция эта легко протекает при нагревании.

9) Очень концентрированная (98%) HNO3 может быть получена взаимодействием воды или разбавленной кислоты с жидкой N2 O4 и кислородом под давлением 50 ат. Этот «прямой синтез» осуществляют обычно при 70 °С. Получаемая кислота находит использование в реактивной технике.

10) Строение молекулы азотной кислоты может быть сокращенно выражено формулой HONO2 . Значение d(NO) для связи с гидроксильным кислородом составляет 1,41 А, а для связей с двумя другими кислородами–1,22 А. Угол ONO в группе NO2 равен 130 °С. Ион NO3 – имеет структуру плоского равностороннего треугольника с азотом в центре [d(N0) = l,21 A].

Безводная азотная кислота представляет собой бесцветную (при хранении быстро желтеющую) жидкость, которая кипит при 86 °С. Кипение сопровождается частичным разложением по реакции:

Растворяясь в перегнавшейся кислоте, двуокись азота сообщает ей желтую или красную (в зависимости от количества NO2 ) окраску. Так как NO2 постепенно выделяется из раствора, подобная азотная кислота называется дымящей. Разложение 100%–ной HNO3 медленно идет на свету уже при обычных температурах.

С водой HNO3 смешивается в любых соотношениях. Применяемая в лабораторной практике концентрированная азотная кислота содержит около 65% HNO3 и имеет плотность 1,40. По составу она приблизительно соответствует формуле HNO 2H2 O.

С химической стороны азотная кислота характеризуется прежде всего сильно выраженными окислительными свойствами.

При этом основным конечным продуктом восстановления не очень крепкой HNO3 является NO, а концентрированной – NO2 .

11) Основным первоначальным продуктом восстановления крепкой НNО3 является, по–видимому, азотистая кислота. Если процесс проводится в не очень крепких растворах, то из образующихся при ее распаде газов выделяется только N0 (так как NO2 , реагируя с водой, дает НNО3 и NO). Однако при повышении концентрации большое значение приобретает обратимость реакции

При эквивалентных соотношениях –реагирующих веществ равновесие ее смещено вправо, но последовательное повышение концентрации HNO3 все более смещает его влево Поэтому основным конечным продуктом восстановления концентрированной НNО2 и является на NO, a NO2 .

Все часто встречающиеся в практике металлы, за исключением Au и Pt, переводятся крепкой азотной кислотой в окислы. Если последние растворимы в HNO3 , то образуются азотнокислые соли. По этой схеме азотная кислота растворяет и такие стоящие в ряду напряжений правее водорода металлы, как Сu, Hg и Ag.

Некоторые бурно реагирующие с разбавленной азотной кислотой металлы (например, Fe) практически не взаимодействуют с концентрированной (и особенно – дымящей). Обусловлено это тем, что на их поверхности образуется очень тонкий, но плотный защитный слой нерастворимого в кислоте окисла. Благодаря такой «пассивности» железа концентрированную HNO3 можно перевозить в стальных цистернах.

Весьма энергично действует крепкая (особенно – дымящая) азотная кислота на некоторые металлоиды. Так, сера окисляется ею при кипячении до H2 SO4 , уголь – до СO2 и т. д. Животные и растительные ткани при действии HNO3 разрушаются.

Для отличия азотной кислоты от азотистой важно их отношение к йодистому водороду, В то время как HNO3 тотчас окисляет его до иода, разбавленная азотная кислота на HJ не действует. Напротив, концентрированная HNO3 окисляет не только HJ, но и НСl. Однако в последнем случае реакция обратима:

Смесь концентрированной HNO3 с концентрированной НСl называют обычно «царской водкой», Она действует значительно энергичнее, чем каждая из этих кислот в отдельности. Так, даже Au и Pt легко растворяются в царской водке с образованием соответствующих хлористых соединений по схемам:

3Pt + 4HNO3 + 12HCl = 3PtCl4 + 4NO + 8H2 O

Активным действующим началом царской водки является, с одной стороны, хлор в момент выделения с другой – легко отдающий его хлористый нитрозил.

Подобно окислительной, очень сильно выражена у HNO3 и кислотная функция. Так как при разбавлении раствора первая из них ослабляется, а вторая усиливается, реакции многих металлов с разбавленной HNO3 протекают по общему типу, т. е. с вытеснением водорода. Однако последний не выделяется, а расходуется на восстановление избытка HNO3 до производных более низкой валентности азота, вплоть до NНз. Как правило, получается смесь различных продуктов восстановления.

12) Характер конечных продуктов восстановления HNO3 сильно зависит от ряда факторов – концентрации кислоты, природы восстановителя, температуры и т. д. Как влияет концентрация самой кислоты (при равных прочих услозиях),видно из приводимого в качестве примера рис. 122. Кипячением в щелочной среде с порошком алюминия нитраты могут быть количественно восстановлены до аммиака. Реакция идет по уравнению, например:

В качестве очень сильной одноосновной кислоты HNO3 образует вполне устойчивые при обычных условиях соли. Подобно самому иону NO3 , большинство нитратов бесцветно. Почти все азотнокислые соли хорошо растворимы в воде. Многие из них находят разнообразное практическое использование.

При достаточном нагревании нитратов они разлагаются, причем характер распада зависит от природы катиона. Соли наиболее активных металлов (расположенных в ряду напряжения левее Mg) с отщеплением кислорода переходят в соответствующие нитриты, соли менее активных (Mg–Cu) распадаются с образованием окислов и еще менее активных (правее Cu) – свободных металлов. Примерами могут служить реакции:

Неодинаковый характер протекания этих реакций обусловлен различной устойчивостью соответствующих нитритов и окислов при температурах распада: в этих условиях для Na еще устойчив нитрит, для Рb он уже неустойчив, но еще устойчив окисел, а для Ag неустойчиво и то и другое соединение, вследствие чего и происходит выделение свободного металла.

Ввиду легкости отдачи нитратами кислорода при высоких температурах, смеси их с горючими веществами сгорают чрезвычайно быстро. На этом основано применение нитратов в пиротехнике и для изготовления черного пороха.

13) Черный порох представляет собой тесную смесь КNО3 с серой и углем, причем «нормальный» порох (68% KNO3 , 15% S и 17% С) приблизительно отвечает составу 2KNO3 +3C + S. Горение его протекает в основном по уравнению:

Отвечающий азотной кислоте ангидрид может быть получен взаимодействием NO2 с озоном:

Азотный ангидрид (N2 O5 ) представляет собой бесцветные, очень летучие кристаллы (т. возг. 32 °С). Последние образованы ионами NO2 + и NO3 , а в парах азотный ангидрид состоит из отдельных молекул, строение которых отвечает формуле O2 N–О–NO2 . Он крайне неустойчив и уже при обычных условиях медленно распадается на двуокись азота и кислород (иногда распад этот настолько ускоряется, что приобретает даже взрывной характер). Будучи сильным окислителем, N2 O5 бурно реагирует со многими веществами. С водой он образует азотную кислоту.


источники:

http://chemicalstudy.ru/reaktsiya-vzaimodejstviya-azota-i-kisloroda/

http://xumuk.ru/nekrasov/ix-03.html