Уравнение с делителем как решать

Об уравнениях высших степеней

Как правило в физике, информатике и экономике мы сталкиваемся с простейшими линейными, или дробно-рациональными уравнениями, реже с квадратными. А что до уравнений третьей и четвёртой степени? Если вам интересно, то прошу под кат.

Для начала рассмотрим понятие уравнения высшей степени. Уравнением высшей степени, называется уравнение вида:


В этой статье я рассмотрю:

1. Кубические уравнения.
2. Возвратные кубические.
3. Применение схемы Горнера и теоремы Безу.
4. Возвратные биквадратные уравнения.

Кубические уравнения

Кубические уравнения, это уравнения, в которых у неизвестной при старшем члене степень равна 3. Кубические уравнения имеют следующий вид:

Решать такие уравнения можно по разному, однако мы воспользуемся знаниями базовой школы, и решим кубическое уравнение методом группировки:

В данном примере используется метод группировки, группируем первые два и последние два члена, получая равные скобки, снова выносим, получая уравнение из двух скобок.

Произведение равно нулю тогда, и только тогда, если хотя бы один из множителей равен нулю, на основании этого мы каждый множитель (скобку) приравниваем к нулю, получая неполное квадратное и линейное уравнения.

Также стоит отметить, что максимальное количество корней уравнения, равно степени неизвестной при главном члене, так в кубическом уравнении может быть не более трёх корней, в биквадратном (4-ой степени) не более четырёх корней и. т. д.

Возвратные кубические уравнения

Возвратные кубические уравнения имеют вид:

Возвратными они называются потому что коэффициенты будут зеркально повторяться. Подобные уравнения тоже решаются школьными методами, но чуть хитрее:

Сначала производится группировка, потом при помощи формул сокращённого умножения мы раскладываем получаемое на множители. Снова получаем 2 равные скобки, «выносим их». Получаем два множителя (скобки) и решаем их как два различных уравнения.

Теорема Безу и схема Горнера

Теорема Безу была открыта, как ни удивительно, Этьеном Безу, французским математиком, занимавшимся в основном алгеброй. Теорему Безу, можно сформулировать следующим образом:

Давайте разберёмся. P(x) — это какой-либо многочлен от x, (x — a) — это двучлен в котором a — это один из целых корней уравнения, который мы находим среди делителей свободного члена.

Три точки, это оператор обозначающий что одно выражение делится на другое. Из этого следует что найдя хотя бы один корень данного уравнения, мы сможем применить к нему эту теорему. Но зачем нужна эта теорема, каково её действие? Теорема Безу — это универсальный инструмент, если вы хотите понизить степень многочлена. Например, при её помощи, кубическое уравнение, можно превратить в квадратное, биквадратное, в кубическое и т. д.

Но одно дело понять, а как поделить? Можно конечно, делить и в столбик, однако этот метод доступен далеко не всем, да и вероятность ошибиться очень высока. Поэтому есть и иной путь, это схема Горнера. Её работу я поясню на примере. Предположим:

И так, нам дан многочлен, и мы возможно заранее нашли один из корней. Теперь мы рисуем небольшую табличку из 6 столбцов и 2 строк, в каждый столбец первой строки (кроме первого), мы вносим коэффициенты уравнения. А в первый столбец 2 строки мы вносим значение a (найденный корень). Потом первый коэффициент, в нашем случае 5, мы просто сносим вниз. Значения последующих столбиков мы рассчитываем так:

(Картинка позаимствована здесь)
Далее поступаем точно так же и с остальными столбцами. Значение последнего столбца (2 строки) будет остатком от деления, в нашем случае 0, если получается число отличное от 0, значит надо избрать другой подход. Пример для кубического уравнения:

Возвратные биквадратные уравнения

Выше мы так же рассматривали возвратные кубические уравнения, а теперь разберём биквадратные. Их общий вид:

В отличие от кубического возвратного уравнения, в биквадратном пары, относительно коэффициентов, есть не у всех, однако в остальном они очень схожи. Вот алгоритм решения таких уравнений:

Как видно, решать такие уравнения совсем не просто. Но я всё равно разберу и этот случай. Начинается решение с деления всего уравнения на x^2. Далее мы группируем, здесь я специально ввёл дополнительную строку для ясности. После этого мы совершаем хитрость, и вводим в первую скобку 2, которую мы сначала прибавляем, а после вычитаем, сумма всё равно не изменится, зато теперь мы можем свернуть эту скобку в квадрат суммы.

Уберём -2 из скобки, предварительно домножив его на a, после чего вводим новую переменную, t и получаем квадратное уравнение.

А теперь перейдём к примеру:

Основная часть так же как и в обобщённом алгоритме, делим на x^2, группируем, сворачиваем в полный квадрат, выполняем подстановку переменной и решаем квадратное уравнение. После этого полученные корни подставляем обратно, и решаем ещё 2 квадратных уравнения (с умножением на x).

Область применения

В виду своей громоздкости и специфичности уравнения высших степеней редко находят себе применение. Однако примеры всё же есть, уравнение Пуассона для адиабатических процессов в Физике.

Кубические уравнения. Метод деления в столбик. Примеры *

Готовиться с нами — ЛЕГКО!

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Определение

Рассмотрим произвольное уравнение вида

\[a_nx^n+a_x^+\dots+a_1x+a_0=0 \qquad \qquad (1)\]

где \(a_n, a_,\dots,a_0\) – некоторые числа, причем \(a_n\ne 0\) , называемое алгебраическим уравнением (с одной переменной) \(n\) -ой степени.

Обозначим \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) . Таким образом, сокращенно уравнение \((1)\) можно записать в виде \(P_n(x)=0\) .

Замечание

Заметим, что квадратное уравнение — это алгебраическое уравнение, степень которого равна \(2\) , а линейное — степень которого равна \(1\) .
Таким образом, все свойства алгебраических уравнений верны и для квадратных уравнений, и для линейных.

Теорема

Если уравнение \((1)\) имеет корень \(x=x_0\) , то оно равносильно уравнению

где \(P_(x)\) – некоторый многочлен степени \(n-1\) .

Для того, чтобы найти \(P_(x)\) , необходимо найти частное от деления многочлена \(P_n(x)\) на \((x-x_0)\)
(т.к. \(P_n(x)=(x-x_0)\cdot P_(x)\) ).

Следствие: количество корней уравнения

Любое алгебраическое уравнение степени \(n\) может иметь не более \(n\) корней.

Замечание

В частности, квадратное уравнение действительно имеет всегда не более двух корней: два, один (или два совпадающих) или ни одного корня.

Для того, чтобы найти частное от деления одного многочлена на другой, удобно пользоваться следующим способом, который мы рассмотрим на примере.

Пример

Известно, что \(x=2\) является корнем уравнения \(2x^3-9x^2+x^4-x+6=0\) . Найдите частное от деления \(2x^3-9x^2+x^4-x+6\) на \(x-2\) .

Решение.
Будем делить многочлен на многочлен в столбик. Запишем

Заметим, что записывать слагаемые в делимом необходимо по убыванию их степеней: в данном случае сначала \(x^4\) , затем \(2x^3\) и т.д.
Подбирать слагаемые в частном будем таким образом, чтобы при вычитании уничтожить сначала четвертую степень, затем третью и т.д.
Т.к. делитель \(x-2\) состоит из двух слагаемых, то при делении в столбик будем сносить по два слагаемых.

Посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(x^4+2x^3\) полученного многочлена уничтожилось слагаемое \(x^4\,\) .
На \(x^3\) . Тогда после вычитания \(x^4+2x^3-x^3(x-2)\) останется \(4x^3\) . Снесем слагаемое \(-9x^2\) :

Теперь посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(4x^3-9x^2\) полученного многочлена уничтожилось слагаемое \(4x^3\) .
На \(4x^2\) : \(\quad 4x^3-9x^2-4x^2(x-2)=-x^2\) .
Опять снесем следующее слагаемое \(-x\) :

Рассуждая аналогично, определяем, что третье слагаемое в частном должно быть \(-x\)

Четвертое слагаемое в частном должно быть \(-3\) :

Таким образом, можно сказать, что \(x^4+2x^3-9x^2-x+6=(x-2)(x^3+4x^2-x-3)\) .

Замечание

1) Если \(x=x_0\) действительно является корнем уравнения, то после такого деления в остатке должен быть \(0\) . В противном случае это означает, что деление в столбик выполнено неверно.

2) Если многочлен делится без остатка (то есть остаток равен \(0\) ) на \(x+a\) , то он также будет делиться без остатка на \(c(x+a)\) для любого числа \(c\ne 0\) . Например, в нашем случае, если бы мы поделили многочлен, к примеру, на \(2x-4\) , то получили бы в частном \(\frac12 x^3+2x^2-\frac12x-\frac32\) .
Заметим, что также происходит и с числами: если мы разделим \(10\) на \(2\) , то получим \(5\) ; а если разделим \(10\) на \(3\cdot 2\) , то получим \(\frac53\) .

3) Деление в столбик помогает найти другие корни уравнения: теперь для того, чтобы найти остальные корни уравнения \(x^4+2x^3-9x^2-x+6=0\) , необходимо найти корни уравнения \(x^3+4x^2-x-3=0\) .
Поэтому рассмотрим несколько фактов, часто помогающих подобрать корни алгебраического уравнения.

Теорема

Если число \(x=1\) является корнем уравнения \((1)\) , то сумма всех коэффициентов уравнения равна нулю:

Доказательство

Действительно, так как \(x=1\) является корнем уравнения \((1)\) , то после подстановки \(x=1\) в него мы получим верное равенство. Так как \(1\) в любой степени равен \(1\) , то слева мы действительно получим сумму коэффициентов \(a_i\) , которая будет равна нулю.

Пример

У уравнения \(x^2-6x+5=0\) сумма коэффициентов равна нулю: \(1-6+5=0\) . Следовательно, \(x=1\) является корнем этого уравнения. Это можно проверить просто подстановкой: \(1^2-6\cdot 1+5=0\quad\Leftrightarrow\quad 0=0\) .

Теорема

Если число \(x=-1\) является корнем уравнения \((1)\) , то сумма коэффициентов при четных степенях \(x\) равна сумме коэффициентов при нечетных степенях \(x\) .

Доказательство

1) Пусть \(n\) – четное. Подставим \(x=-1\) :

\(a_n\cdot (-1)^n+a_\cdot (-1)^+a_\cdot (-1)^+\dots+a_1\cdot (-1)+a_0=0 \quad\Rightarrow\) \(a_n-a_+a_-\dots-a_1+a_0=0 \quad \Rightarrow\) \(a_n+a_+\dots+a_0=a_+a_+\dots+a_1\)

2) Случай, когда \(n\) – нечетное, доказывается аналогично.

Пример

В уравнении \(x^3+2x^2-8x+5=0\) сумма коэффициентов равна нулю:

Значит, число \(x=1\) является корнем данного уравнения.

Можно разделить в столбик \(x^3+2x^2-8x+5\) на \(x-1\) :

\[\begin x^3+2x^2-8x+5&&\negthickspace\underline<\qquad x-1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 + 3x -5\\[-3pt] 3x^2 — 8x\,\phantom<000>&&\\ \underline<3x^2 - 3x\,>\phantom<000>&&\\[-3pt] -5x + 5&&\\ \underline<-5x +5>&&\\[-3pt] 0&&\\ \end\]

Таким образом, \(x^3+2x^2-8x+5=(x-1)(x^2 + 3x -5)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2+3x-5=0\) .

Таким образом мы нашли все корни исходного уравнения.

Пример

В уравнении \(x^3-x^2+x+3=0\) сумма коэффициентов при четных степенях \(-1+3=2\) , а при нечетных: \(1+1=2\) . Таким образом, число \(x=-1\) является корнем данного уравнения.

Можно разделить в столбик \(x^3-x^2+x+3\) на \(x+1\) :

\[\begin x^3-\,x^2+ \ x+3\phantom<0>&&\negthickspace\underline<\qquad x+1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 -2x +3\\[-3pt] -2x^2 + x\phantom<0000>&&\\ \underline<-2x^2 -\! 2x>\,\phantom<000>&&\\[-3pt] 3x + 3&&\\ \underline<3x +3>&&\\[-3pt] 0&&\\ \end\]

Таким образом, \(x^3-x^2+x+3=(x+1)(x^2 — 2x +3)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2-2x+3=0\) .
Но это уравнение не имеет корней ( \(D ), значит, исходное уравнение имеет всего один корень \(x=-1\) .

Замечание

Подбор корней таким образом, деление в столбик и разложение многочлена на множители помогают найти корни уравнения.

Существует еще одна очень важная теорема, позволяющая подобрать рациональный корень алгебраического уравнения, если таковой имеется.

Теорема

Если алгебраическое уравнение

\[a_nx^n+a_x^+\dots+a_1x+a_0=0,\] где \(a_n, \dots, a_0\) — целые числа,
имеет рациональный корень \(x=\dfrac pq\) , то число \(p\) является делителем свободного члена \(a_0\) , а число \(q\) — делителем старшего коэффициента \(a_n\) .

Пример

Рассмотрим уравнение \(2x^4-5x^3-x^2-5x-3=0\) .

В данном случае \(a_0=-3, a_n=2\) . Делители числа \(-3\) — это \(\pm 1, \pm 3\) . Делители числа \(2\) – это \(\pm 1, \pm 2\) . Комбинируя из полученных делителей дроби, получаем все возможные варианты рациональных корней:

\[\pm 1, \ \pm \dfrac12, \ \pm 3, \ \pm\dfrac32\]

По предыдущим теоремам можно быстро понять, что \(\pm1\) не являются корнями. Подставив \(x=-\dfrac12\) в уравнение, получим:

\[2\cdot \dfrac1<16>+5\cdot \dfrac18-\dfrac 14+5\cdot \dfrac12-3=0 \quad \Leftrightarrow \quad 0=0\]

Значит, число \(x=-\frac12\) является корнем уравнения.

Можно перебрать остальные варианты: таким образом мы найдем еще один рациональный корень уравнения \(x=3\) . Значит, уравнение можно представить в виде

\[\left(x+\frac12\right)(x-3)\cdot Q_2(x)=0 \quad \text<или>\quad (2x+1)(x-3)\cdot P_2(x)=0\] (тогда \(P_2(x)=\frac12 Q_2(x)\) ). Заметим, что второй вид записи уравнения более удобный, т.к. нам не придется при делении в столбик работать с дробями.

После деления в столбик \(2x^4-5x^3-x^2-5x-3\) на \((2x+1)(x-3)=2x^2-5x-3\) :

получим, что \(P_2(x)=x^2+1\) . Данный многочлен не имеет корней, значит, уравнение имеет только два корня: \(x=-\frac12\) и \(x=3\) .

Замечание

Заметим, что если, пользуясь предыдущей схемой, не удалось подобрать рациональный корень уравнения, это вовсе не значит, что уравнение не имеет корней.
Например, уравнение \(x^3-2=0\) имеет корень — это \(x=\sqrt[3]2\) , и он не рациональный.
Для подбора иррациональных корней не существует универсального алгоритма.

Пример

Найдите корни уравнения \(4x^3-3x^2-\frac<23>6x-1=0\) .

Заметим, что в данном уравнении не все коэффициенты – целые числа (коэффициент при \(x\) равен \(-\frac<23>6\) ). Но мы можем преобразовать данное уравнение к нужному нам виду: необходимо умножить правую и левую части уравнения на \(6\) :

\[24x^3-18x^2-23x-6=0\]
Делители свободного члена: \(\pm 1, \pm 2, \pm 3, \pm 6\) .
Делители старшего коэффициента: \(\pm 1, \pm 2, \pm 3, \pm4, \pm 6, \pm 8, \pm 12, \pm 24\) .
Получилось достаточно много \(:)\)
Выпишем некоторые возможные рациональные корни уравнения:

\[\pm 1, \ \pm \dfrac12, \ \pm \dfrac13, \ \pm \dfrac 16, \ \pm\dfrac18, \ \pm2, \ \pm\dfrac23, \ \pm \dfrac14, \ \pm3\quad \text<\small<и т.д.>>\]

Перебирая варианты, убеждаемся, что \(\frac32\) подходит. Значит, многочлен \(24x^3-18x^2-23x-6\) должен без остатка поделиться на \(x-\frac32\) . Для удобства разделим на \(2(x-\frac32)=2x-3\) (чтобы не работать с дробями):

Таким образом, \(24x^3-18x^2-23x-6=(2x-3)(12x^2 +9x +2)\) . Уравнение \(12x^2 +9x +2=0\) в свою очередь корней не имеет. Значит, \(x=\frac32\) – единственный корень исходного уравнения.

Теорема

Любой многочлен \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) можно разложить на произведение множителей: линейных ( \(ax+b, a\ne 0\) ) и квадратичных ( \(cx^2+px+q, c\ne 0\) ) с отрицательным дискриминантом.

Следствие

Кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) всегда имеет как минимум один вещественный корень, т.к. его левую часть всегда можно представить как

Замечание

На самом деле, такой вывод можно сделать о любом алгебраическом уравнении нечетной степени. Но, как правило, в школьном курсе математики крайне редко встречаются уравнения степени выше \(4\) .

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

«Решение уравнений высших степеней». 9-й класс

Разделы: Математика

Класс: 9

Учебная:

  • Углубить знания учащихся по теме “ Решение уравнений высших степеней” и обобщить учебный материал.
  • Познакомить учащихся с приёмами решения уравнений высших степеней.
  • Научить учащихся применять теорию делимости при решения уравнений высших степеней.
  • Научить учащихся выполнять деление “уголком” многочлена на многочлен.
  • Развивать умения и навыки работы с уравнениями высших степеней.
  • Развивающая:

    1. Развитие внимания учащихся.
    2. Развитие умения добиваться результатов труда.
    3. Развитие интереса к изучению алгебры и навыков самостоятельной работы.

    Воспитывающая:

  • Воспитание чувства коллективизма.
  • Формирование чувства ответственности за результат работы.
  • Формирование у учащихся адекватной самооценки при выборе отметки за работу на уроке.
  • Оборудование: компьютер, проектор.

    1 этап работы. Организационный момент.

    2 этап работы. Мотивация и выход на постановку проблемы

    Уравнение одно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.

    В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.

    А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.

    3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.

    1) Решение линейного уравнения.

    Линейным называется уравнение вида , где по определению. Такое уравнение имеет единственный корень .

    2) Решение квадратного уравнения.

    Квадратным называется уравнение вида , где . Количество корней и сами корни определяются дискриминантом уравнения . Для уравнение корней не имеет, для имеет один корень (два одинаковых корня)

    , для имеет два различных корня .

    Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение -й степени имеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).

    Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена на множители или с использованием замены переменной.

    3) Решение кубического уравнения.

    Решим кубическое уравнение

    Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:

    Итак, данное кубическое уравнение имеет три корня: ; ;.

    4) Решение биквадратного уравнения.

    Очень распространены биквадратные уравнения, которые имеют вид (т.е. уравнения, квадратные относительно ). Для их решения вводят новую переменную .

    Решим биквадратное уравнение .

    Введём новую переменную и получим квадратное уравнение , корнями которого являются числа и 4.

    Вернёмся к старой переменной и получим два простейших квадратных уравнения:

    (корни и )

    (корни и )

    Итак, данное биквадратное уравнение имеет четыре корня:

    ; ;.

    Попробуем решить уравнение используя выше изложенные приёмы.

    4 этап работы. Привести некоторые утверждения о корнях многочлена вида , где многочлен n-й степени

    Приведём некоторые утверждения о корнях многочлена вида :

    1) Многочлен -й степени имеет не более корней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.

    2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.

    3) Если на концах отрезка значения многочлена имеют разные знаки (т.е. ,), то на интервале находится хотя бы один корень. Это утверждение широко используется для приближенного вычисления корней многочлена.

    4) Если число является корнем многочлена вида , то этот многочлен можно представить в виде произведения , где многочлен (-й степени. Другими словами, многочлена вида можно разделить без остатка на двучлен . Это позволяет уравнение -й степени сводить к уравнению (-й степени (понижать степень уравнения).

    5) Если уравнение со всеми целыми коэффициентами (причём свободный член ) имеет целый корень , то этот корень является делителем свободного члена . Такое утверждение позволяет подобрать целый корень многочлена (если он есть).

    5 этап работы. Показать как применяется теория делимости для решения уравнений высших степеней. Рассмотреть примеры решения уравнений высших степеней , в которых для разложения левой части на множители используется способ деления многочлена на многочлен “уголком”.

    Пример 1. Решим уравнение .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: . Проверка показывает, что корнем уравнения является число -1. Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы фактически разложили левую часть уравнения на множители:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:

    Итак, данное уравнение имеет три корня:

    Пример 2. Решим уравнение .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: ;. Проверим:

    Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы разложили левую часть уравнения на множители:

    Аналогичным образом поступим и с многочленом .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел: ;. Проверим:

    Значит, многочлен можно представить в виде

    произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы разложили левую часть исходного уравнения на множители:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:

    Итак, данное уравнение имеет четыре корня:

    6 этап работы. Закрепление изученного материала.

    Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.

    7 этап работы. Вывод урока.

    Решить уравнения высших степеней можно следующим образом:

    • используя формулы для нахождения корней (если они известны);
    • используя замену переменной;
    • раскладывая многочлен в левой части уравнения на множители, используя способ деления многочлена на многочлен “уголком”.

    8 этап работы. Домашнее задание.

    Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).


    источники:

    http://shkolkovo.net/theory/kubicheskie_uravneniya_metod_deleniya_v_stolbik_algebraicheskie_uravneniya_stepeni_n_primery

    http://urok.1sept.ru/articles/657320