Уравнение с корнем графическим способом

Графический метод при решении иррациональных уравнений

Продолжаем изучать методы решения иррациональных уравнений. Сейчас сосредоточимся на графическом методе. Сначала скажем, в каких ситуациях для решения иррациональных уравнений применяется графический метод. Дальше кратко напомним основные положения метода, его особенности и алгоритм. После этого подробно разберем решения наиболее характерных иррациональных уравнений.

Какие иррациональные уравнения решаются графически

Обычно, графическим методом решаются иррациональные уравнения, для которых выполняются два следующих условия:

  • Не видно другого более простого метода решения.
  • Функции, отвечающие частям уравнения, довольно простые в плане построения графиков.

Понятно, что в общем случае построение графиков функций – это дело непростое. Именно поэтому графическим методом решают лишь уравнения f(x)=g(x) , которые, во-первых, не решаются другим способом или решение другим способом сопряжено со значительными сложностями, и, во-вторых, для которых функции f и g либо основные элементарные, либо их графики могут быть получены из графиков основных элементарных функций при помощи геометрических преобразований.

Например, решать графическим методом иррациональное уравнение можно, но не стоит, так как решение этого уравнения легко получить по определению корня или методом возведения обеих частей уравнения в квадрат. А вот для решения уравнения графический метод — самое то: не видно легкого решения другими методами и легко построить графики функций, отвечающих частям этого уравнения. Решение этого иррационального уравнения мы приведем ниже.

Краткое описание метода, его особенности и алгоритм

Подробное описание графического метода дано в статье «Графический метод решения уравнений». Здесь мы не будем повторяться, а лишь кратко и без пояснений напомним главные положения этого метода, его особенности и алгоритм.

Графический метод решения уравнений предполагает использование графиков функций, отвечающих частям уравнения, для нахождения решения уравнения. Корнями уравнения являются абсциссы точек пересечения графиков функций.

Без использования специализированных компьютерных программ сложно достичь высокой точности построения графиков функций. Поэтому, все результаты, полученные с использованием графиков, мы можем считать лишь приближенными, нуждающимися в проверке и обосновании (кроме, разве что, самых очевидных). Это главная особенность графического метода.

Наконец, алгоритм. Согласно графическому методу решения уравнений, нужно:

  • Построить в одной прямоугольной системе координат графики функций, отвечающие левой и правой частям уравнения.
  • По чертежу определить все точки пересечения графиков:
    • если точек пересечения нет, то решаемое уравнение не имеет корней,
    • если точки пересечения имеются, то переходим к следующему шагу алгоритма.
  • По чертежу определить абсциссы всех точек пересечения графиков – это приближенные значения всех корней исходного уравнения.
  • Если есть основания полагать, что некоторые или все определенные на предыдущем шаге значения являются точными значениями корней решаемого уравнения, то осуществить их проверку, например, подстановкой.

Решение характерных иррациональных уравнений

Практическую часть откроем иррациональным уравнением, для решения которого непросто предложить какой-либо аналитический метод. А вот графический метод позволяет показать, что уравнение не имеет корней.

Решите иррациональное уравнение

Иногда графический метод позволяет определить точные значения корней уравнения. Это обычно происходит, когда корнями являются целые числа. Но даже целые корни, найденные по графикам, полезно проверять при помощи подстановки в исходное уравнение. Продемонстрируем это при решении следующего иррационального уравнения графическим методом.

Решить уравнение

Часто при помощи графического метода невозможно получить точные значения корней. Более того, в некоторых случаях по графикам невозможно определить даже количество корней уравнения, не то что их значения. Это касается тех случаев, когда графики функций, отвечающие правой и левой части уравнения, очень близки на некоторых участках, почти совпадают. Выход из такой ситуации может состоять в построении графиков именно на этих участках в увеличенном масштабе при повышенной точности построения. Однако делать это без компьютера проблематично, и по понятным причинам предпочтительнее обратиться к какому-либо аналитическому методу решения, если, конечно, есть такая возможность.

Решить иррациональное уравнение

Мы подробно рассмотрели как графический метод применяется при решении иррациональных уравнений. Можно приступать к изучению следующего метода решения иррациональных уравнений — метода, базирующегося на свойствах возрастающих и убывающих функций.

Урок-практикум «Графическое решение уравнений, содержащих функцию y=√х (функцию квадратного корня)». 8-й класс

Разделы: Математика

Класс: 8

Базовый учебник: Алгебра 8 класс. Учебник для общеобразовательных учреждений/ А. Г. Мордкович.

Цель урока: применить алгоритм решения уравнений графически к функции у = .

Задачи:

  • Обучающая: способствовать закреплению знаний свойств функции у = , умение строить график этой функции, использовать алгоритм графического решения уравнений применительно к графику квадратного корня из неотрицательного числа.
  • Развивающая: развитие умения правильно оперировать полученными знаниями, логически мыслить; развитие инициативы, умения принимать решения, не останавливаться на достигнутом; работа на интерактивной доске, познавательная активность.
  • Воспитывающая: воспитание познавательного интереса к предмету; к самостоятельности при решении учебных задач; воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок практикум.

Методы:

  • словестные: фронтальная работа
  • наглядные алгоритм, графики.
  • практические: индивидуальная, парная и групповая работа, тренировочная самостоятельная работа.

Оборудование: учебник, рабочая тетрадь, раздаточный материал, школьная доска, интерактивная доска.

План урока.

1. Организационный момент. 1 мин

2. Проверка домашнего задания. 5 мин

3. Актуализация знаний. Устная работа с классом. 7 мин

4. Закрепление материала 20 мин

5. Тренировочная самостоятельная работа. 8 мин

6. Постановка домашнего задания. 3 мин

7. Рефлексия. 1 мин

8. Итог урока. 1мин

Ход урока

1. Организационный момент.

2. Проверка домашнего задания. (Учащиеся проверяют домашнюю работу, сверяясь с эталоном, оценивают правильность и полноту выполнения согласно критериям, ставят оценку).

Для №13.3 Сопоставьте график который получился у вас дома с одним из графиков. Слайд 2. Из данных утверждений (приложение 1 у каждого ученика) выберите те свойства, которые подходят для функции у = — :

С помощью графика найдите: Слайд 3

а) значения у при х = 1; ; 9; (выборочно)

б) значения х, если у = 0; -2; -4; (выборочно)

в) наименьшее и наибольшее значения функции на отрезке ;

г) при каких значениях х график функции расположен выше прямой у = -2. Ниже прямой у = -2.

3. Актуализация знаний. Устная работа с классом.

1. Принадлежит ли графику функции у = точки

А(2; ); В(1; 0); С(6,25; 2,5); Д(-9; 3).Слайд 4

2. Найдите наименьшее и наибольшее значение функции у = Слайд 5

а) на отрезке ;

б) на полуинтервале [4; 7);

в) на луче [0; )

3. Решите уравнение по заданному графику: х 2 = х +2. Слайд 6

Учащиеся вспоминают (7 класс) алгоритм решения уравнений данного типа, проговаривая, что является корнем уравнения. Как данное задание мы будем применять на уроке.

Ученики говорят тему урока(на доске записана), формулируют цель,

4. Закрепление материала

Задание 1. Итак, повторив алгоритм решения уравнений графически выполним задание № 13.9 (б).

(ученик у доски, остальные в тетради)

= 6 – х;

1) Рассмотрим две функции у = и у = 6 — х

2) Построим график функции у = ,

х014
у012

3) Построим график функции у = 6 – х,

х02
у64

4) По графику устанавливаем, что графики пересекаются в одной точке А(4; 2). Проверим принадлежность данной точки нашим функциям.

Ответ: х = 4. Слайд 7

Задание 2 Решить уравнение графически: два человека у доски остальные на местах выполняют соответственно свои варианты самостоятельно. Совместно устраняют в ходе проверки обнаруженные пробелы (на доске и на листах учеников готовая памятка с построенным графиком линейной функции). Построение графика квадратного корня ученики выполняют самостоятельно. И записывают ответ.

Памятка 1 вариант

а) – = х – 2

х01
у-2-1

Оцените себя, отметив уровень этого показателя. Понимание: – ______________+

Памятка 2 вариант

б) — = 2 – 3х

х01
у2-1

Оцените себя, отметив уровень этого показателя. Понимание: – ______________+

Задание 3. Решить графически систему уравнений

(работа выполняется в парах используя приложение № 2)

После выполнения задания учащиеся проверяют свое решение, сравнивая с эталоном. Слайд 8

Встаньте те кто справился с данным заданием.

Физкультминутка для глаз. Слайд 9

Задание 4. Работа в группах(задания дифференцированы, приложение 3): Слайд 10

Задание 1 группе: Докажите, что графики функций у = и у = х + 0,5 не имеют общих точек. Слайд 11

Чтобы доказать, что графики функций y = и у = х + 0,5 не имеют общих точек, достаточно их построить.

Задание 2 группе: Сколько корней имеет данное уравнение = х + b Слайд 12

а) Построим график функции y = и будем относительно него передвигать прямые вида y = x + b. Это параллельные прямые, которые образуют острый угол с положительным направлением оси абсцисс.

Таким образом, очевидно, что уравнение = x + b может иметь один, два корня, а может и не иметь корней.

Задание 3 группе: Сколько корней имеет данное уравнение = — х + b

Прямые вида y = –x + b – это параллельные прямые, которые образуют тупой угол с положительным направлением оси абсцисс.

Получаем, что уравнение = –x + b имеет либо один корень, либо не имеет корней.

Обсуждение решений каждой группы.( Для готовых графиков квадратного корня на интерактивной доске учащиеся показывают свои решения)

5. Тренировочная самостоятельная работа.

В а р и а н т 1

1 . По графику функции у = найдите:

а) значение функции при х = 3, у =____

б) значение аргумента, которому соответствует значение y = 1,8; х = _____

2. Принадлежит ли графику функции y = точка:

а) А (36; 6); ______ б) В (–9; 3)_______?

3. Решите уравнение графически — = — х

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

В а р и а н т 2

1. По графику функции y = найдите:

а) значение функции при х = 5; у =

б) значение аргумента, которому соответствует значение у = 1,5; х =

2. Принадлежит ли графику функции y = — точка:

а) А (81; -9)______ б) В (–16; 4)_______

3. Решите уравнение графически = х

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

Проверяем работу с помощью эталона. Слайд 13 Выясняем проблемы по данной теме.

6. Постановка домашнего задания.

№ 13.9(г), № 13.11(г), № 13.16(рис 7 опишите свойства функции)

7. Рефлексия.

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

8. Итог урока.

Урок я хочу закончить словами древнегреческого ученого Фалеса:

Что быстрее всего? – Ум

Что мудрее всего? – Время

Что приятнее всего? Достичь желаемого.

Я думаю, мы с вами достигли желаемого? Еще раз вспомнли функцию квадратного корня из неотрицательного числа и применили алгоритм решения уравнения графически к этой функции. Но ребята, кроме у = в дальнейшем мы будем рассматривать более сложные функции, например у = у = -1 у = +5.

Так что перспектива развития ваших знаний велика. Дерзайте.

Приложение № 1

Для номера 13.3 Сопоставьте график который получился у вас дома с одним из графиков. Слайд 2

Из данных утверждений выберите те свойства, которые подходят для функции у = — :

  1. Область определения функции – луч [0; + )
  2. Область определения функции – луч ( + ; 0]
  3. у = 0 при х = 0, у 0
  4. Функция убывает на луче [0; + )
  5. Функция возрастает на луче [0; + )
  6. унаиб = 0, унаим не существует
  7. Функция непрерывна на луче [0; + )
  8. Область значения функции – луч [0; + )
  9. Область значения функции – луч (- ; 0]
  10. Функция выпукла вниз.
  11. Функция выпукла вверх.

Приложение 2

Работа в парах Задание № 3

Решите графически систему уравнений:

Приложение 3

Работа в группах Задание № 4

Задание 1 группе: Докажите, что графики функций у = и у = х + 0,5 не имеют общих точек.

Задание 2 группе: Сколько корней имеет данное уравнение = х + b

Задание 3 группе: Сколько корней имеет данное уравнение = — х + b

Реферат » Решение уравнений и неравенств графическим способом» ( 9 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

МБОУ Алтайская СОШ №1

Тема : « Графическое решение уравнений и неравенств»

Учащаяся 9 а класса

МБОУ Алтайская СОШ №1

Бабаева Галина Яковлевна,

МБОУ Алтайской СОШ №1

С. Алтайское , Алтайский район, 2019 год.

II . Основная часть

2. Как графически решить уравнение________________________стр.4

3. Какие бывают функции ?________________________________стр.4

4. Графическое решение линейного уравнения с одной переменной.стр.5

5. Решение квадратного уравнения графическим способом._____ стр6-8

6. Графическое решение смешанных уравнений._______________стр.8-12. 7. Решение квадратных неравенств графическим способом_______стр.13

8. Решение линейных неравенств графическим способом стр 14

IV . Список литературы______________________________________стр.16

Цель моей работы – изложить графический метод решения уравнений и неравенств, который дает возможность определить корни или доказать ,что уравнение корней не имеет ( или решением неравенства является пустое множество).

Актуальность темы : графический метод, опирающийся на знания элементарных функций, удобно применять при решении задач на нахождение числа корней и на нахождение корней уравнений.

Изучение поведения функций и построение их графиков является важным разделом математики. Свободное владение техникой построения графиков часто помогает решать многие задачи и порой является единственным средством решения. Кроме того, умение строить графики функций представляет большой самостоятельный интерес. В данной исследовательской работе я показала как наиболее удобным способом преобразовывать уравнения . чтобы сводить к построению элементарных функций.

Часто построение графиков связано с исследованием поведения функций. Однако необходимость построения графиков не ограничивается только этим. В ряде случаев графики облегчают нахождение решений уравнений и неравенств, сокращая и упрощая аналитические выкладки, и часто при этом являются единственным методом решения таких задач. Данный метод может использоваться не только для одиночных уравнений, но и для их систем, а также неравенств

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим. Графиком функции y = f(x) называется множество всех точек координатной плоскости.

Заметим , что так как функция f сопоставляет каждому x D(f) одно число f(x) , то график функции f пересекается любой прямой, параллельной оси ординат, не более, чем в одной точке. И наоборот: всякое непустое множество точек плоскости, имеющее со всякой прямой, параллельной оси ординат, не более одной общей точки, является графиком некоторой функции.

Не всякое множество точек координатной плоскости является графиком какой-либо функции. Например, множество точек окружности не может быть графиком функции, поскольку значению абсциссы внутри окружности, соответствует два значения ординаты.

В общем случае уравнение с одной переменой х можно записать в виде f(x)=g(x),где f(x) и g(x) — некоторые функции. Функция f(x) является левой частью , а g(x) — правой частью уравнения.

Тогда для решения уравнения необходимо построить в одной системе координат графики функций f(x) и g(x). Абсциссы точек пересечения будут являться решениями данного уравнения.

Использование монотонности функций при решении уравнений: если функция строго возрастает, а функция строго убывает на некотором множестве, то графики этих функций имеют не более одной точки пересечения, а уравнение на этом множестве имеет не более одного решения. Поэтому, чтобы решить такие уравнения можно подобрать (если это удается) число, которое является их корнем.

2. Как графически решить уравнение.

Иногда уравнения решают графическим способом. Для этого надо преобразовать уравнение так (если оно уже не представлено в преобразованном виде), чтобы слева и справа от знака равенства стояли выражения, для которых легко можно нарисовать графики функций. Графическим решением уравнения являются абсциссы точек пересечения графиков построенных функций. Графики могут пересекаться в нескольких точках, в одной точке, вообще не пересекаться. Отсюда следует, что уравнение может иметь несколько корней, или один корень, или вообще их не иметь.

3. Какие бывают функции .

Линейная функция задаётся уравнением у = k*x+ b , где k и b – некоторые числа. Графиком этой функции является прямая. Для построения прямой достаточно в таблице значений взять только две точки. Это вытекает из аксиомы планиметрии

Функция обратной пропорциональности у =k/x , где. График этой функции называется гиперболой.

Функция (х– a)^2+ (у – b)^2 = r^2 , где а , b и r – некоторые числа. Это окружность радиуса r с центром в т. А ( а , b ).

Квадратичная функция y = a *х 2 + b*x+ c , где а, b, с – некоторые числа и

а не равно 0. Графиком этой функции является парабола.

Графики линейных функций, содержащих выражение под знаком модуля.

Для построения графиков функций, содержащих выражение под знаком модуля, сначала находят корни выражений, стоящих под знаком модуля. Эти корни разбивают числовую прямую на промежутки. График строят в каждом промежутке отдельно.

В простейшем случает, когда только одно выражение стоит под знаком модуля и нет слагаемых без знака модуля, можно построить график функций,

опустив знак модуля, а затем часть графика, расположенного в области отрицательных значений y , отобразить симметрично оси ОХ.

Элементарная функций, содержащая модуль :

4. Графическое решение линейного уравнения с одной переменной.

Как мы уже знаем, графиком линейного уравнения является прямая линия, отсюда и название данного вида. Линейные уравнения достаточно легко решать алгебраическим путем – все неизвестные переносим в одну сторону уравнения, все, что нам известно – в другую и уравнение решено. Мы нашли корень .А я покажу , как это сделать графическим способом.

Задание . Решить графическим способом уравнение : 2 x 10 = 2

1)Перенесем слагаемые следующим образом: 2 x = 12.

2) Построим графики функций: y=2x и y=12.

Но можно решать и по-другому.

Для рассмотрения альтернативного решения вернемся к нашему уравнению:

Построим графики функций: y=2 x − 10 y =2

5. Решение квадратного уравнения графическим способом.

Для этого преобразуем уравнение к виду: х 2 =-2x+8 . Построим графики функций: у = -2x+8 и у = х 2

Получим точки пересечения графиков данных функций.

В ответ запишем абсциссы этих точек : x = -4 и x =2.

Данное уравнение можно решить , переписав уравнение следующим образом: x^2 – 8 = -2x

Тогда будем строить графики функций: y = x^2 – 8 и y = -2x.

А также уравнение можно решить , переписав следующим образом:

Тогда будем строить графики следующих функций : y = x^2 + 2x и y = 8 .

При этом абсциссы точек пересечения графиков будут одинаковые :

Задание. Решить уравнение: x² – 2x = 0

Перепишем уравнение в виде : x² = 2x

Построим графики функций y = x² и y = 2 и найдем точки их пересечения :

Задание. Решить уравнение: х 2 +2=0

Преобразуем так: х 2 = -2

Построим графики функций: у=-2 и у= х 2

Графики функций не пересекаются ,поэтому уравнение решений не имеет.

Ответ : решений нет.

6. Графическое решение смешанных уравнений.

Задание. Решить уравнение: 3/х +2 =х

1)Перенесем слагаемые таким образом: 3/ х = х-2

2) Построим графики функций от каждой части уравнения.

Найдем координаты точек пересечения графиков данных функций.

Из построения видно, что графики функций пересекаются в точках с координатами : (3;1) и(-1;-3).

Задание. Решить уравнение: 2 х^3 – x — 1=0

Перепишем его так : 2 х 3 = x + 1

Построим графики функций от левой и правой части уравнения:

у= 2 х 3 (графиком этой функции является кубическая парабола) и график от правой части уравнения :у=х+1

Из построения видно, что абсцисса точки пересечения является х=1. значит, в ответ нужно записать: х=1

Решим графическим способом такое уравнение : х 3 =8.

Строим графики функций: у = х 3 и у=8., затем найдем абсциссу точки пересечения графиков этих функций.

Задание. Решить уравнение: √x – 0.5x = 0

Перепишем так: √x = 0.5x

Построим графики функций: у= 0.5x и у = √x

Как видно из построения, графики функций пересекаются в двух точках:

Нас интересует только координата x.

Значит уравнение √x – 0.5x = 0 имеет два корня: x 1 = 0 и x 2 = 4.

7. Решение квадратных неравенств графическим способом.

Способ , который нам хорошо известен при изучении данной темы по учебнику.

Я же предлагаю переписать неравенство следующим образом : х^2-4>3х.

Построим графики функций от левой и правой частей неравенства.

Выделим ту часть, где график от левой части выше графика от правой части.

На мой взгляд такое решение более красивое , интересное и более понятное.

8. Решение линейных неравенств и систем неравенств графическим способом.

,

Называют ся линейными неравенствами .

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения).

Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости.

С помощью математических операций и знака неравенства можно определить множество решений неравенства

Вообще графический способ решения неравенств с одной переменной применяется не только для решения квадратных неравенств, но и неравенств других видов.

Суть графического способа решения неравенств следующая:

рассматривают функции y = f(x) и y = g(x) , которые соответствуют левой и правой частям неравенства, строят их графики в одной прямоугольной системе координат и выясняют, на каких промежутках график одной из них располагается ниже или выше другого.

Те промежутки, на которых график функции у = f (х) выше графика функции y = g(х) являются решениями неравенства f(x)>g(x) ;

график функции y = f(х) не ниже графика функции y = g(x) являются решениями неравенства f(x) ≥ g(x) ;

график функции у = f (х) ниже графика функции y = g(х) являются решениями неравенства f(x) ;

график функции y = f(х) не выше графика функции y = g(х) являются решениями неравенства f(x) ≤ g(x) .

Также скажем, что абсциссы точек пересечения графиков функций y = f(x) и y = g(x) , являются решениями уравнения f(x) = g(x) .

Мы рассмотрели графический метод решения уравнений и квадратных неравенств; рассмотрели конкретные примеры, при решении которых использовали некоторые свойства функций.

Иногда при графическом решении некоторых уравнений и неравенств корни определяются только приближённо в силу того, что невозможно с высокой точностью построить график функции, измерить абсциссы или ординаты точек пересечения графика с осями координат или с другими графиками. Тем не менее, той точности, которую обеспечивает графический метод, бывает вполне достаточно для практических нужд.

Построение графиков основывается на знании основных элементарных функций, и на основные методы построения графиков функций. В работе представлено достаточное количество примеров, раскрывающих графический метод решения линейных и квадратных уравнений и неравенств, который доступен для понимания .

Работа может быть использована для углубления и расширения знаний в области построения графиков функций и использовании графического метода при решении некоторых видов уравнений и неравенств. Теорию можно использовать так же при подготовки к экзаменам , к олимпиадам.

Я свою работу представляла учащимся 8-х и 9-х классов нашей школы. И продолжаю дополнять свои исследования , а именно находить красивые решения линейных неравенств и систем неравенств.

Это и закрепление изученных свойств функций, и прекрасная демонстрация их применения на практике.

В старших классах я буду ещё знакомиться с другими функциями , с другими уравнениями и неравенствами и м не интересно будет продолжить свой проект.


источники:

http://urok.1sept.ru/articles/659649

http://infourok.ru/referat-reshenie-uravneniy-i-neravenstv-graficheskim-sposobom-klass-3684418.html