Уравнение с тремя переменными фанфик

Лучше, чем наркотики, или Звёзды на моих плечах (слэш)

Текст фанфика доступен для чтения только зарегистрированным пользователям старше 18 лет

Если вам есть 18 лет, вы можете зарегистрироваться и указать в профиле свой возраст — тогда текст фанфика станет доступен

Ginger Wind
Ага, немного) Но, в общем-то, по факту, это первая влюбленность и есть — а она всегда непростая, независимо от возраста)
Поэтому тут и сомнения, и самокопания, и ревность. Ещё Ирен масла в огонь мимоходом долила 🙂

Jerica
О, ну здесь её точно не будет) Это гарантирую)
А ещё я попыталась представить Шерлока, встречающегося с бывшими Джона. Это было бы забавно))

Llina
Ох, спасибо за комментарий) Мне очень приятно, что всё не зря, и что я смогла подарить вам положительные эмоции)

Ginger Wind
Джон — врач, поэтому знает в этом плане чуть больше остальных. Конечно, он догадался, пусть и не так быстро, как Шерлок)
Спасибо за рекомендацию и за комментарии по ходу выкладки. Меня это морально поддерживало 🙂 Мой первый настолько большой фик, да ещё и по одному из самых любимых пейрингов.
(А за 8 и 9 главы я вообще переживала очень сильно, было ощущение, что можно было сделать лучше, что что-то недодала. )

Чтобы написать комментарий, войдите

Если вы не зарегистрированы, зарегистрируйтесь

Математика

63. Два уравнения с тремя неизвестными . Пусть имеем уравнения:

3x + 4y – 2z = 11
5x + 4y + 2z = 19,

которые надо решить совместно. Мы умеем решать совместно 2 уравнения с двумя неизвестными, почему прежде всего приходит мысль, что здесь одно неизвестное является лишним и что его, вероятно, можно заменить любым числом. И действительно. Если дадим x произвольное значение, например, возьмем x = 7, то получим

21 + 4y – 2z = 11
35 + 4y + 2z = 19,

т. е. 2 уравнения с двумя неизвестными, которые мы умеем решить.

Упростив эти уравнения, получим:

4y – 2z = –10
4y + 2z = –16.

Сложив из по частям, получим:

Вычитая из 2-го первое, получим:

Взяв x = 0, получим:

4y – 2z = 11
4y + 2z = 19.

Решив (так же, как и выше) эти уравнения, получим:

Так же для x = 1, получим y = 2 ¾; z = 1 ½ и т. д.

Эти решения можно записать в таблице, причем, как видим, здесь одно неизвестное (у нас x) является независимым переменным, а два других являются зависимыми переменными.

Вот эта таблица:

два уравнения с тремя неизвестными имеют бесконечно много решений, причем для получения их надо одному из неизвестных давать произвольные значения .

Чтобы удобнее получать эти решения, можно заранее из данных уравнений определить зависимые переменные через независимое.

Для этой цели перенесем члены 3x и 5x, имеющиеся в наших уравнениях, в правую часть (эти члены, ведь, приходится считать известными), — получим:

4y – 2z = 11 – 3x
4y + 2z = 19 – 5x.

Сложив эти уравнения по частям, получим:

8y = 30 – 8x и y = (30 – 8x) / 8 = (15 – 4x) / 4.

Вычитая по частям из 2-го уравнения первое, получим:

4z = 8 – 2x и z = (8 – 2x) / 4 = (4 – x) / 2.

Теперь, взяв для x какое-нибудь значение, например, x = 2, легко в уме найдем: y = 1 ¾ и z = 1.

Вот еще пример. Пусть даны уравнения:

2x + y – z = 7
3x + 2y + 4z = 11.

Определим из них x и y через z. Для этого сначала перенесем члены с z в правую часть уравнения:

2x + y = 7 + z и 3x + 2y = 11 – 4z (1).

Обе части первого уравнения умножим на 2:

4x + 2y = 14 + 2z
3x + 2y = 11 – 4z.

Вычтем по частям из 1-го уравнения второе:

Таким образом мы определили x через z. Затем умножим обе части 1-го уравнения из системы (1) на 3 и обе части 2-го на 2 (чтобы уравнять коэффициенты при x). Получим:

6x + 3y = 21 + 3z
6x + 4y = 22 – 8z.

Вычитая по частям из 2-го уравнения первое, получим:

Таким образом определили y через z.

Пользуясь равенствами (2) и (3), легко найти сколько угодно решений данных двух уравнений, причем надо неизвестному z давать произвольные значения. Вот несколько решений:

Система линейных уравнений с тремя переменными

Линейное уравнение с тремя переменными и его решение

Уравнение вида ax+by+cz = d , где a, b, c, d — данные числа, называется линейным уравнением с тремя переменными x, y и z.

Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; \frac<1> <2>x-8y-5z = 7$

Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.

Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$

Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.

О тождествах – см. §3 данного справочника

Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.

Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве .

Решение системы линейных уравнений с тремя переменными методом подстановки

Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)

Например: решить систему

$$ <\left\< \begin 3x+2y-z = 8 \\ x-y+z = -2 \\ 2x-3y-5z = 1 \end \right.> \Rightarrow <\left\< \begin 3(y-z-2)+2y-z = 8 \\ x = y-z-2 \\ 2(y-z-2)-3y-5z = 1 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = y-z-2 \\ 5y-4z = 14 \\ -y-7z = 5 \end \right.> \Rightarrow <\left\< \begin x = y-z-2 \\ y = -7z-5 \\ 5(-7z-5)-4z = 14 \end \right.> \Rightarrow <\left\< \begin x = y-z-2 \\ y = -7z-5 \\ -39z = 39 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = 2-(-1)-2 = 1 \\ y = -7\cdot(-1)-5 = 2 \\ z = -1 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 2 \\ z = -1 \end \right.> $$

Решение системы линейных уравнений с тремя переменными методом Крамера

Для системы с 3-мя переменными действуем по аналогии.

Дана система 3-х линейных уравнений с 3-мя переменными:

$$ <\left\< \begin a_1 x+b_1 y+c_1 z = d_1 \\ a_2 x+b_2 y+c_2 z = d_2 \\ a_3 x+b_3 y+c_3 z = d_3 \end \right.> $$

Определим главный определитель системы:

$$ \Delta = \begin a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end $$

и вспомогательные определители :

$$ \Delta_x = \begin d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end, \Delta_y = \begin a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end, \Delta_z = \begin a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end $$

Тогда решение системы:

Соотношение значений определителей, расположения плоскостей и количества решений:

Три плоскости пересекаются в одной точке

Три плоскости параллельны

Две или три плоскости совпадают или пересекаются по прямой

Бесконечное множество решений

Осталось определить правило вычисления определителя 3-го порядка.

Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):

$$ \Delta = \begin a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end = a_1 = \begin b_2 & c_2 \\ b_3 & c_3 \end — b_1 = \begin a_2 & c_2 \\ a_3 & c_3 \end + c_1 = \begin a_2 & b_2 \\ a_3 & b_3 \end = $$

$$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$

Примеры

Пример 1. Найдите решение системы уравнений методом подстановки:

$$<\left\< \begin z = 3x+2y-13 \\ 2x-y+3(3x+2y-13) = -2 \\ x+2y-(3x+2y-13) = 9 \end \right.> \Rightarrow <\left\< \begin z = 3x+2y-13 \\ 11x+5y = 37 \\ -2x = -4 \end \right.> \Rightarrow $$

$$\Rightarrow <\left\< \begin z = 3\cdot2+2\cdot3-13 = -1 \\ y = \frac<37-11\cdot2> <5>= 3 \\ x = 2 \end \right.> \Rightarrow <\left\< \begin x = 2 \\ y = 3 \\ z = -1 \end \right.> $$

$$ <\left\< \begin x = -y-3z+6 \\ 2(-y-3z+6)-5y-z = 5\\ (-y-3z+6)+2y-5z = -11 \end \right.> \Rightarrow <\left\< \begin x = -y-3z+6 \\ -7y-7z = -7 |:(-7) \\ y-8z = -17 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = -y-3z+6 \\ y+z = 1 \\ y-8z = -17 \end \right.> \Rightarrow <\left\< \begin x = -y-3z+6 \\ 9z = 18 \\ y = 1-z \end \right.> \Rightarrow <\left\< \begin x = 1-6+6 = 1 \\ z = 2 \\ y = 1-2 = -1 \end \right.> \Rightarrow$$

Пример 2. Найдите решение системы уравнений методом Крамера:

$$ \Delta = \begin 3 & 2 & -1 \\ 2 & -1 & 3\\ 1 & 2 & -1 \end = 3 = \begin -1 & 3 \\ 2 & -1 \\ \end — 2 = \begin 2 & 3 \\ 1 & -1 \\ \end — 1 = \begin 2 & -1 \\ 1 & 2 \\ \end = $$

$$ \Delta_x = \begin 13 & 2 & -1 \\ -2 & -1 & 3 \\ 9 & 2 & -1 \\ \end = 13 = \begin -1 & 3 \\ 2 & -1 \\ \end — 2 = \begin -2 & 3 \\ 9 & -1 \\ \end — 1 = \begin -2 & -1 \\ 9 & 2 \\ \end = $$

$$ \Delta_y = \begin 3 & 13 & -1 \\ 2 & -2 & 3 \\ 1 & 9 & -1 \\ \end = 3 = \begin -2 & 3 \\ 9 & -1 \\ \end — 13 = \begin 2 & 3 \\ 1 & -1 \\ \end — 1 = \begin 2 & -2 \\ 1 & 9 \\ \end = $$

$$ \Delta_z = \begin 3 & 2 & 13 \\ 2 & -1 & -2 \\ 1 & 2 & 9 \\ \end = 3 = \begin -1 & -2 \\ 2 & 9 \\ \end — 2 = \begin 2 & -2 \\ 1 & 9 \\ \end + 13 = \begin 2 & -1 \\ 1 & 2 \\ \end = $$

$$ \Delta = \begin 1 & 1 & 3 \\ 2 & -5 & -1\\ 1 & 2 & -5 \end = 1 = \begin -5 & -1 \\ 2 & -5 \\ \end — 1 = \begin 2 & -1 \\ 1 & -5 \\ \end + 3 = \begin 2 & -5 \\ 1 & 2 \\ \end = $$

$$ \Delta_x = \begin 6 & 1 & 3 \\ 5 & -5 & -1 \\ -11 & 2 & -5 \\ \end = 6 = \begin -5 & -1 \\ 2 & -5 \\ \end — 1 = \begin 5 & -1 \\ -11 & -5 \\ \end + 3 = \begin 5 & -5 \\ -11 & 2 \\ \end = $$

$$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$

$$ \Delta_y = \begin 1 & 16 & 3 \\ 2 & 5 & -1 \\ 1 & -11 & -5 \\ \end = 1 = \begin 5 & -1 \\ -11 & -5 \\ \end — 6 = \begin 2 & -1 \\ 1 & -5 \\ \end + 3 = \begin 2 & 5 \\ 1 & -11 \\ \end = $$

$$ \Delta_z = \begin 1 & 1 & 6 \\ 2 & -5 & 5 \\ 1 & 2 & -11 \\ \end = 1 = \begin -5 & 5 \\ 2 & -11 \\ \end — 1 = \begin 2 & 5 \\ 1 & -11 \\ \end + 6 = \begin 2 & -5 \\ 1 & 2 \\ \end = $$

Пример 3*. Решите систему уравнений относительно x,y,и z:

$$ a \neq b, b \neq c, a \neq c $$

Решаем методом замены:

$$ <\left\< \begin z = -(a^3+a^2 x+ay)\\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \\ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 \end \right.> \Rightarrow <\left\< \beginz = -(a^3+a^2 x+ay)\\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \\ (c^2-a^2 )x+(c-a)y = a^3-c^3 \end \right.> $$

Т.к. $ a \neq b$ второе уравнение можно сократить на $(a-b) \neq 0$

Т.к.$ a \neq c$ третье уравнение можно сократить на $(a-с) \neq 0 $. В третьем уравнении после сокращения поменяем знаки:

Из второго уравнения получаем:

Т.к. $b \neq c$ можно сократить на $(b-c) \neq 0$:

$$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$

$$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$


источники:

http://maths-public.ru/algebra1/equation-three-vars2

http://reshator.com/sprav/algebra/7-klass/sistema-linejnyh-uravnenij-s-tremya-peremennymi/