Уравнение с x в обоих частях

Please wait.

We are checking your browser. mathvox.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6dffc3632b1b005d • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Метод возведения обеих частей уравнения в одну и ту же степень

Продолжаем изучать методы решения уравнений. Сейчас мы в деталях разберем метод возведения обеих частей уравнения в одну и ту же степень. Начнем с теории: рассмотрим, для решения каких уравнений применяется метод, опишем, в чем он состоит, приведем теоретическое обоснование метода возведения обеих частей уравнения в одну и ту же степень, запишем соответствующие алгоритмы решения уравнений. После этого сосредоточимся на практике и рассмотрим разнообразные примеры решения уравнений методом возведения обеих частей уравнения в одну и ту же степень.

Для решения каких уравнений применяется

Метод возведения обеих частей уравнения в одну и ту же степень в первую очередь применяется для решения иррациональных уравнений. Это объясняется тем, что возведение в натуральную и большую единицы степень позволяет избавляться от корней. Например, возведение в степень позволяет избавляться от корней при решении следующих уравнений:

  • , C≥0 , в частности, , и т.п. Возведение в квадрат обеих частей первого уравнения позволяет перейти к уравнению , и дальше – к сравнительно простому уравнению без знаков корней x 2 −5=4 . Аналогично, возведение обеих частей второго уравнения в шестую степень приводит к уравнению и дальше — к элементарному уравнению 4−5·x=0 .
  • , например, , и др. В первом случае избавиться от корня позволяет возведение обеих частей уравнения в квадрат, а во втором случае – в куб.
  • и , таких как , и подобные им. Для первого уравнения напрашивается возведение его обеих частей в квадрат, для второго – в шестую степень.
  • уравнений с двумя, тремя корнями в записи, например, и . В таких случаях для избавления от знаков радикалов к возведению обеих частей уравнения в одну и ту же степень приходится обращаться дважды: первый раз в самом начале, второй раз – после преобразований и уединения радикала.
  • уравнений, в которых под знаком корня находятся другие корни, к примеру, . Здесь также к возведению обеих частей уравнения в одну и ту же степень приходится прибегать два раза.
  • и это не весь список.

Метод возведения обеих частей уравнения в одну и ту же степень используется и для решения некоторых уравнений, в которых переменная находится в основаниях степеней с дробными показателями. Например, уравнение можно решить методом возведения его обеих частей в дробную степень 6/11 .

Также метод возведения частей уравнения в степень применяется при решении некоторых степенных уравнений, в которых фигурируют иррациональные показатели. В пример приведем два уравнения и . Возведение их обеих частей в одну и ту же степень (в первом случае в степень , во втором – в степень ) позволяет избавиться от степеней с иррациональными показателями и перейти к сравнительно простым уравнениям.

В чем состоит метод возведения обеих частей уравнения в одну и ту же степень

Метод состоит в переходе к уравнению, которое получается из исходного путем возведения его обеих частей в одну и ту же степень, и нахождении решения исходного уравнения по решению полученного уравнения.

На практике наиболее часто прибегают к возведению обеих частей уравнения в одну и ту же натуральную степень, большую единицы, то есть, в квадрат, куб и т.д. Делается это на базе следующего утверждения:

Возведение обеих частей уравнения в одну и ту же четную натуральную степень дает уравнение-следствие, а возведение обеих частей уравнения в одну и ту же нечетную натуральную степень, большую единицы, дает равносильное уравнение (см. равносильные уравнения и уравнения-следствия).

Реже приходится обращаться к возведению обеих частей уравнения в другие степени, в частности, в дробные рациональные и иррациональные. В этих случаях отталкиваются от такого утверждения:

Уравнение A(x)=B(x) , на области допустимых значений переменной x для которого A(x)>0 или A(x)≥0 , B(x)>0 или B(x)≥0 , равносильно уравнению A r (x)=B r (x) , где r – положительное действительное число.

Обоснование метода

Обоснованием метода возведения обеих частей уравнения в одну и ту же степень является доказательство утверждений из предыдущего пункта. Приведем эти доказательства.

Возведение обеих частей уравнения в одну и ту же четную натуральную степень дает уравнение-следствие, а возведение обеих частей уравнения в одну и ту же нечетную натуральную степень дает равносильное уравнение.

Докажем его для уравнений с одной переменной. Для уравнений с несколькими переменными принципы доказательства те же.

Пусть A(x)=B(x) – исходное уравнение и x0 – его корень. Так как x0 является корнем этого уравнения, то A(x0)=B(x0) – верное числовое равенство. Мы знаем такое свойство числовых равенств: почленное умножение верных числовых равенств дает верное числовое равенство. Умножим почленно 2·k , где k – натуральное число, верных числовых равенств A(x0)=B(x0) , это нам даст верное числовое равенство A 2·k (x0)=B 2·k (x0) . А полученное равенство означает, что x0 является корнем уравнения A 2·k (x)=B 2·k (x) , которое получено из исходного уравнения путем возведения его обеих частей в одну и ту же четную натуральную степень 2·k .

Для обоснования возможности существования корня уравнения A 2·k (x)=B 2·k (x) , который не является корнем исходного уравнения A(x)=B(x) , достаточно привести пример. Рассмотрим иррациональное уравнение , и уравнение , которое получено из исходного путем возведением его обеих частей в квадрат. Несложно проверить, что нуль является корнем уравнения , действительно, , что то же самое 4=4 — верное равенство. Но при этом нуль является посторонним корнем для уравнения , так как после подстановки нуля получаем равенство , что то же самое 2=−2 , которое неверное. Этим доказано, что уравнение, полученное из исходного путем возведения его обеих частей в одну и ту же четную степень, может иметь корни, посторонние для исходного уравнения.

Так доказано, что возведение обеих частей уравнения в одну и ту же четную натуральную степень приводит к уравнению-следствию.

Остается доказать, что возведение обеих частей уравнения в одну и ту же нечетную натуральную степень дает равносильное уравнение.

Покажем, что каждый корень уравнения является корнем уравнения, полученного из исходного путем возведения его обеих частей в нечетную степень, и обратно, что каждый корень уравнения, полученного из исходного путем возведения его обеих частей в нечетную степень, является корнем исходного уравнения.

Пусть перед нами уравнение A(x)=B(x) . Пусть x0 – его корень. Тогда является верным числовое равенство A(x0)=B(x0) . Изучая свойства верных числовых равенств, мы узнали, что верные числовые равенства можно почленно умножать. Почленно умножив 2·k+1 , где k – натуральное число, верных числовых равенств A(x0)=B(x0) получим верное числовое равенство A 2·k+1 (x0)=B 2·k+1 (x0) , которое означает, что x0 является корнем уравнения A 2·k+1 (x)=B 2·k+1 (x) . Теперь обратно. Пусть x0 – корень уравнения A 2·k+1 (x)=B 2·k+1 (x) . Значит числовое равенство A 2·k+1 (x0)=B 2·k+1 (x0) — верное. В силу существования корня нечетной степени из любого действительного числа и его единственности будет верным и равенство . Оно в свою очередь в силу тождества , где a – любое действительное число, которое следует из свойств корней и степеней, может быть переписано как A(x0)=B(x0) . А это означает, что x0 является корнем уравнения A(x)=B(x) .

Так доказано, что возведение обеих частей иррационального уравнения в нечетную степень дает равносильное уравнение.

Доказанное утверждение пополняет известный нам арсенал, использующийся для решения уравнений, еще одним преобразованием уравнений – возведением обеих частей уравнения в одну и ту же натуральную степень. Возведение в одну и ту же четную степень обеих частей уравнения является преобразованием, приводящим к уравнению-следствию, а возведение в нечетную степень – равносильным преобразованием. На этом преобразовании базируется метод возведения обеих частей уравнения в одну и ту же степень.

Утверждение, касающееся возведения обеих частей уравнения в одну и ту же положительную действительную степень, доказывается аналогично с опорой на единственность степени положительного числа с действительным показателем.

Алгоритмы решения уравнений методом возведения частей в одну и ту же степень

Есть смысл записать три алгоритма решения уравнений методом возведения обеих частей уравнения в одну и ту же степень: первый – для возведения в нечетную степень, второй – для возведения в четную степень, третий – для возведения в ненатуральную положительную степень.

Алгоритм решения уравнений методом возведения обеих частей в одну и ту же нечетную степень:

  1. Обе части уравнения возводятся в одну и ту же нечетную степень 2·k+1 .
  2. Решается полученное уравнение. Его решение есть решение исходного уравнения.

Алгоритм решения уравнений методом возведения обеих частей в одну и ту же четную степень:

  1. Обе части уравнения возводятся в одну и ту же четную степень 2·k .
  2. Решается полученное уравнение.
    • Если полученное уравнение не имеет корней, то делается вывод об отсутствии корней у исходного уравнения.
    • Если полученное уравнение имеет корни, то проводится отсеивание посторонних корней любым методом, не завязанным на области допустимых значений, например, через проверку подстановкой.

Обратите внимание: этот алгоритм, в отличие от предыдущего, содержит пункт, касающийся отсеивания посторонних корней. Это связано с тем, что возведение обеих частей уравнения в одну и ту же нечетную степень приводит к равносильному уравнению, а возведение обеих частей уравнения в четную степень в общем случае приводит к уравнению-следствию. Поэтому, в результате возведения в нечетную степень посторонние корни не возникают, а при возведении в четную степень посторонние корни могут появиться. Таким образом, при возведении частей уравнения в четную степень возникает необходимость в отсеивании посторонних корней. Почему отсеивание посторонних корней в этом случае нужно проводить методом, не использующим ОДЗ? Потому что возведение обеих частей уравнения в четную степень может приводить к появлению посторонних корней в пределах ОДЗ, и отсеять их по ОДЗ или по условиям ОДЗ невозможно.

Наконец, запишем алгоритм решения уравнений методом возведения обеих частей в одну и ту же положительную дробную рациональную или иррациональную степень:

  1. Убеждаемся, что выражения в левой и правой части уравнения не принимают отрицательных значений на ОДЗ для решаемого уравнения.
  2. Возводим обе части уравнения в одну и ту же положительную степень.
  3. Решаем полученное уравнение. Его решение дает искомое решение исходного уравнения.

Примеры решения уравнений методом возведения обеих частей уравнения в одну и ту же степень

Большое количество попадающих под разбираемую тему примеров с подробными решениями приведено в статье решение иррациональных уравнений методом возведения обеих частей в одну и ту же степень. В добавление к этим примерам стоит разобрать решение уравнения через возведение обеих частей уравнения в одну и ту же степень, не являющуюся натуральным числом.

Решите уравнение

Решать заданное уравнение можно несколькими разными методами. Например, можно провести решение методом логарифмирования. Также можно преобразовать уравнение к виду и перейти к уравнению на основании метода освобождения от внешней функции, или, сославшись на единственность степени с данным основанием и данным показателем. Но в рамках текущей статьи нас интересует решение уравнения методом возведения его обеих частей в одну и ту же степень, поэтому, проведем решение именно этим методом.

Учитывая свойство степени в степени (см. свойства степеней), несложно догадаться, что избавиться от иррациональных показателей позволяет возведение обеих частей уравнения в степень . Здесь мимоходом заметим, что — положительное число (при необходимости смотрите сравнение чисел), и при этом не натуральное. Мы вправе осуществить задуманное возведение частей уравнения в положительную ненатуральную степень, так как степени, находящиеся в левой и правой части исходного уравнения, на ОДЗ для исходного уравнения не принимают отрицательных значений. При этом мы получим равносильное уравнение, что было обосновано в одном из предыдущих пунктов текущей статьи.

Итак, проводим возведение обеих частей уравнения в одну и ту же степень . Имеем . Это уравнение равносильно исходному, значит, решив его, мы будем иметь интересующее нас решение.

Решаем полученное уравнение:

Так мы пришли к кубическому уравнению x 3 −x 2 +2=0 . Один его корень x=−1 легко подбирается. Разделив многочлен x 3 −x 2 +2 на двучлен x+1 , получаем возможность представить кубическое уравнение в виде (x+1)·(x 2 −2·x+2)=0 . Квадратное уравнение x 2 −2·x+2=0 не имеет решений, так как его дискриминант отрицательный. Из этого заключаем, что уравнение x 3 −x 2 +2=0 имеет единственный корень x=−1 .

В процессе решения мы дважды отмечали, что нам будет необходимо сделать проверку найденных корней. Сейчас пришло это время. Проверку выполним через подстановку найденного корня x=−1 в исходное уравнение , имеем


источники:

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

http://www.cleverstudents.ru/equations/method_of_powering.html