Уравнение сгорания бензина в автомобильном двигателе

Процесс сгорания топлива

Для обеспечения сгорания в двигателе внутреннего сгорания небольшое количество топлива смешивается с поступающим воздухом. К сожалению, двигатель внутреннего сгорания не может сжигать без остатка все топливо, которое он использует. Вследствие этого двигатель выпускает побочные продукты сгорания в виде отработавших газов. Некоторые из этих побочных продуктов вредны и загрязняют воздух. Борясь с этой проблемой, изготовители автомобилей разработали так называемые устройства понижения токсичности выхлопа, которые ограничивают выброс этих вредных веществ или полностью устраняют его.

Сгорание

В процессе сгорания происходят несколько химических реакций. Одни соединения разрушаются, а новые соединения образуются. Управление процессом сгорания — это ключ к управлению всей работой и токсичностью выхлопа двигателя внутреннего сгорания.

Для процесса сгорания требуются три элемента:

1. Воздух
2. Топливо
3. Искра зажигания

Эти три элемента иногда упоминаются как «триада сгорания». Если один элемент триады отсутствует, сгорание невозможно. Двигатель внутреннего сгорания рассчитывается на объединение этих трех элементов, поддерживая полный контроль над процессом.

Воздух состоит из атомов азота (N), кислорода (О ) и других газов. Большую часть воздуха составляет азот, являющийся инертным, негорючим газом. Воздух не горит, но в нем содержится достаточное количество кислорода, что позволяет поддерживать сгорание.

Топливо

Бензин состоит из углеводородов, которые образуются в результате переработки сырой нефти. Углеводороды состоят из атомов водорода (Н) и углерода (С). В бензин добавляются различные химикаты, типа ингибиторов коррозии, красителей и очищающих средств. Эти химикаты называются присадками.
Тепло и давление, присутствующие в двигателе внутреннего сгорания, могут заставить бензин, находящийся в камере сгорания, воспламениться раньше, чем генерируется искра зажигания. Это называется преждевременным воспламенением и более подробно описывается дальше. Октановое число бензина указывает на то, насколько хорошо он противостоит преждевременному воспламенению. Дополнительная очистка может способствовать увеличению октанового числа.
В настоящее время в регионах с чрезвычайно высоким уровнем загрязнения воздуха используется тип топлива, называемый улучшенным бензином (подвергнутым реформингу) (RFG). Такой бензин имеет специальные присадки, называемые окислителями, которые улучшают сгорание, увеличивают октановое число и уменьшают токсичность выхлопа.

В двигателе внутреннего сгорания воздух и топливо поступают в камеру сгорания, и затем генерируется искра зажигания, вызывающая сгорание. Перед зажиганием воздушно-топливной смеси двигатель нагревается и сжимает смесь. Нагревание помогает процессу смесеобразования, а сжатие увеличивает энергию, генерируемую при сгорании.

В двигателе внутреннего сгорания сгорание происходит в течение доли секунды (приблизительно в течение 2 миллисекунд). В этот момент разрушаются связи между атомами водорода и углерода. Разрушение связей приводит к высвобождению энергии в камере сгорания, толканию поршня вниз и инициированию вращения коленчатого вала.
После разделения атомов водорода и углерода они соединяются с атомами кислорода, содержащимися в воздухе. Атомы водорода объединяются с кислородом, образуя воду. Атомы углерода объединяются с кислородом, образуя двуокись углерода (углекислый газ).

Говоря языком химии, полное сгорание в двигателе внутреннего сгорания выражается формулой:

НС + О2 = Н2 О + СО2

топливо + кислород = вода и двуокись углерода

Абсолютно эффективный двигатель внутреннего сгорания на выпуске имел бы только воду (Н О) и двуокись углерода (СО ), что соответствует Данной выше химической формуле. Это означало бы, что все углеводороды в процессе сгорания разложились. К сожалению, дело обстоит не так.

Неэффективное сгорание -это главная причина наличия вредных веществ в выхлопе автомобиля. Эффективное сгорание ведет к наименьшей токсичности выхлопа. Эффективность сгорания увеличивается посредством корректировки соотношения «воздух/топливо».

Инженеры-автомобилестроители определили, что токсичность выхлопа автомобиля можно уменьшить, если бензиновый двигатель работает с соотношением «воздух/топливо», равным 14.7:1. Технический термин известен как «стехиометрическое соотношение». Стехиометрическое соотношение означает химически правильную воздушно-топливную смесь, которая производит желаемую химическую реакцию, входе которой происходит полное сгорание топлива с желаемой токсичностью выхлопа.
Соотношение «воздух/топливо» 14.7:1 обеспечивает наилучшее управление всеми тремя компонентами (углеводороды, одноокись углерода и оксиды азота) при выпуске почти во всех условиях. Соотношение «воздух/топливо» также увеличивает эффективность каталитического нейтрализатора, который является частью системы выпуска автомобиля.

Бедная воздушно-топливная смесь

Обеднение воздушно-топливной смеси обычно вызывается неисправностью в двигателе. Обеднение — это состояние, когда двигатель получает слишком много воздуха или кислорода. Причиной слишком высокого уровня кислорода могут стать утечки вакуума или неисправная система подачи топлива.

Богатая воздушно-топливная смесь

Богатая воздушно-топливная смесь — это также указание на неисправность двигателя. Обогащение — это состояние, когда двигатель не может сжечь все топливо, которое вошло в камеры сгорания. Состояние обогащения может возникать в результате высокого давления топлива, проблем с опережением зажигания или низкой компрессии.

Имеются два типа аномального сгорания, которое может происходить в двигателе: детонация и преждевременное воспламенение.
Детонация — это неустойчивый процесс горения, который может вызывать неисправность прокладки головки цилиндров, а также и другие повреждения двигателя. Детонация возникает, когда в камере сгорания наблюдается перегрев и повышенное давление. Когда это происходит, создается взрывная сила, которая инициирует резкий рост давления в цилиндрах, сопровождаемый сильным металлическим стуком. Ударные волны, похожие на удары молотка, генерируемые при детонации, подвергают прокладку головки цилиндров, поршень, кольца, свечу зажигания и подшипники шатуна серьезным перегрузкам.
Преждевременное воспламенение — это другое аномальное состояние горения, которое иногда путают с детонацией. Преждевременное воспламенение имеет место, когда какая-либо точка в камере сгорания становится настолько горячей, что становится источником зажигания и заставляет топливо воспламеняться до генерирования искры зажигания. Оно может сделать свой вклад в детонацию или даже стать ее причиной.
Вместо воспламенения топлива в правильный момент времени, чтобы дать коленчатому валу плавный толчок в требуемом направлении, топливо загорается преждевременно. Это вызывает мгновенный обратный удар в тот момент, когда поршень пытается повернуть коленчатый вал в неправильном направлении. Этот удар вследствие напряжений, которые он создает, может быть очень разрушительным. Кроме того, преждевременное воспламенение может локализовать тепло до такой степени, что оно может частично проплавить или прожечь отверстие в головке поршня.

Стехиометрическая воздушно-топливная смесь обеспечивает наилучший компромисс между динамическими характеристиками, экономичностью и токсичностью выхлопа.
При богатой воздушно-топливной смеси все топливо не сгорает. Поэтому увеличивается уровень выделений углеводородов и одноокиси углерода. Бедная воздушно-топливная смесь может при сгорании генерировать повышенное количество тепла. Поэтому увеличивается содержание оксидов азота. Чрезмерно обедненная воздушно-топливная смесь в результате приводит к пропускам воспламенения. Это увеличивает выделения углеводородов.
Каталитические нейтрализаторы, которые химически нейтрализуют токсичные отработавшие газы, наиболее эффективны в очень узком диапазоне, близком к стехиометрическому соотношению.

Побочные продукты сгорания

Поскольку двигатель внутреннего сгорания не имеет абсолютной эффективности, в процессе сгорания генерируются три нежелательных побочных продукта:
1. Углеводороды (НС)
2. Одноокись углерода (СО)
3. Оксиды азота (N0 X )

Неполное сгорание вызывает выделение углеводорода и одноокиси углерода. Выделения углеводорода — это углеводороды, которые не разрушились в процессе сгорания. Одноокись углерода образуется, потому что не имеется достаточного количества атомов кислорода, чтобы связать углерод.

В идеальном случае азот должен проходить камеру сгорания неизменным. Но когда температура в камере сгорания достигает приблизительно 1 371 °С (2 500 °F), атомы азота и кислорода связываются, образуя (N0 X )

Химическая формула процесса сгорания, при котором образуются оксиды азота выглядит следующим образом:

НС + О2 + N2 = Н2 О + СО + N0x

Формула «NO » используется для оксидов азота, потому что OHci отражает комбинацию атома азота и любого количества атомов кислорода. Например, оксид азота (N0) состоит из одного атома азота и одного атома кислорода, в то время как двуокись азота (N0 ) состоит из одного атома азота и двух атомов кислорода.

Высокое содержание НС

Высокое содержание НС может быть вызвано недостаточной эффективностью системы зажигания, неправильным опережением зажигания или неправильными фазами газораспределения, протечками вакуума, попаданием масла или низкой степенью сжатия. Доля углеводородов измеряется в количестве частиц на миллион.

Высокое содержание СО

Высокое содержание СО может быть вызвано такими факторами, как:
• Чрезмерно богатая воздушно-топливная смесь
• Загрязнение воздушного фильтра
• Выход из строя клапана PCV
• Загрязнение топлива маслом
• Заедание или протечки в топливной форсунке
На исправном автомобиле с каталитическим нейтрализатором выделение одноокиси углерода обычно приближается к нулю. Содержание одноокиси углерода измеряется в процентах от полного объема в воздухе.

NOx генерируются при высокой температуре горения (выше приблизительно 1 371 °С (2 500 °F)) и обычно образуются, если температура горения не контролируется. Содержание оксидов азота измеряется в количестве частиц на миллион.

Так же рекомендуем прочитать Вам интересную статью Кузовные детали

Химические реакции сгорания бензинов

Рабочие тела и их свойства

Изучаемые вопросы:

Топлива, применяемые в автомобильных двигателях. Понятие о рабочем теле и его свойствах

В качестве топлив для двигателей с принудительным зажиганием используется жидкий продукт, получаемый в результате переработки сырой нефти, – бензин и горючие газы, основную часть которых составляют углеводороды.

Легкая фракция нефти, выкипающая до 205 ○ С, используется для производства топлив, называемых бензинами. Более тяжелые фракции с пределами выкипания до 350 ○ С служат основой для производства дизельных топлив. Фракционный состав топлива показывает процентное (по объему) содержание углеводородов, выкипающих до той или иной температуры. Различие во фракционном составе бензинов и дизельных топлив определило различие и в устройствах для образования горючей смеси, состоящей из воздуха (окислителя) и паров топлива, и способах воспламенения. Топливо и воздух в зависимости от физических свойств топлива вводятся в цилиндр двигателя совместно (бензиновый двигатель) или раздельно (дизель).

В двигателях с внешним смесеобразованием топливо, подаваемое вместе с воздухом через впускной клапан, должно легко испаряться и образовывать гомогенную смесь с поступающим воздухом.

Необходимо, чтобы топливо:

– обеспечивало быстрый и надежный пуск независимо от температуры наружного воздуха;

– позволяло осуществлять процесс сгорания без образования нагара и кокса на поверхности КС;

– способствовало уменьшению износов цилиндропоршневой группы (ЦПГ);

– обеспечивало полное сгорание и снижение токсических составляющих.

Химические реакции сгорания бензинов

Как известно, жидкое топливо, применяющееся в ДВС, обычно состоит из углерода С, водорода Н и кислорода О. Кроме того, в топливе содержится незначительное количество серы, азота и других веществ, которыми в расчете можно пренебречь.

Если элементарный состав можно охарактеризовать весовыми долями, то

Теоретическое количество воздуха, необходимое для сгорания топлива такого состава:

кмоль/кг топл (4)

. (5)

Ни в карбюраторном, ни в газовом, ни в дизельном двигателе невозможно получить такую идеальную смесь топлива с теоретически необходимым количеством воздуха, при котором каждая частичка топлива нашла бы нужное для ее полного сгорания количество кислорода.

В бензиновых двигателях на некоторых режимах отношение , а в дизельных — , где отношение a носит название коэффициента избытка воздуха для сгорания. В бензиновых двигателях с воспламенением однородной смеси и полностью открытой дроссельной заслонкой наибольшая экономичность и устойчивость протекания рабочего процесса достигается при a = 1,1…1,3.

Максимальная мощность этих двигателей обеспечивается при некотором обогащении смеси (a= 0,85…0,9). Устойчивая работа на малых нагрузках и ХХ (холостых ходах) требует большого обогащения смеси. При a 1

Жидкое топливо

Горючая смесь до начала сгорания в карбюраторных двигателях состоит из молекул воздуха и испарившегося топлива, поэтому, если через mm обозначить молекулярный вес паров топлива, то количество кг/моль горючей смеси на 1 кг топлива выразится величиной

M1 = aLo + кмоль/кг топл. (6)

В газовых двигателях горючая смесь состоит из топлива и воздуха

При полном сгорании топлива продукты сгорания состоят: из СО2 (углекислый газ), Н2О (водяной пар), О2 (избыточный кислород), N2(азот).

2.2.3. Процесс сгорания

Процесс сгорания в бензиновом двигателе и дизеле существенно различен из-за особенностей топлива, способа смесеобразования и воспламенения рабочей смеси. Для каждого двигателя принято рассматривать этот процесс по диаграмме с координатами р – φ, на которой этапы процесса сгорания представлены развернуто по углу поворота коленчатого вала. Для бензинового ДВС на развернутой диаграмме процесса сгорания рабочей смеси различают фазы
I — III (рис. 2.6).

Рис. 2.6. Развернутая диаграмма процесса сгорания рабочей смеси в бензиновом ДВС:
1 — момент искрового разряда; 2 — начало фазы интенсивного горения; 3 — окончание фазы интенсивного горения; ВМТ — верхняя мертвая точка положения поршня; I — фаза начала горения, равная углу α1 (задержка интенсивного горения); II — фаза интенсивного горения, равная углу α2; III — фаза догорания топлива; р — давление газа; φ — угол поворота коленчатого вала; θ0.3 — угол опережения зажигания;——– расширение газа без сгорания; — ► — направление хода процесса

Фаза I , равная углу α1— начало горения. В течение фазы I образуется фронт горения рабочей смеси от момента искрового разряда между электродами свечи в точке 1. Горение рабочей смеси начинается без повышения давления (участок 1—2). Длительность начальной фазы I определяет задержку интенсивного горения и зависит от состояния рабочего тела, угла опережения зажигания θ0.3, энергии искрового разряда. Увеличение степени сжатия ε и уменьшение угла опережения зажигания приводят к сокращению фазы I (уменьшению угла α1,). Увеличение частоты вращения коленчатого вала, снижение нагрузки на ДВС, обеднение рабочей смеси, уменьшение мощности источника воспламенения — причины удлинения фазы I (увеличения угла α1,).

Фаза II, равная углу α2, — начало интенсивного горения в точке 2 с резким повышением температуры и давления продуктов сгорания до их максимума в точке 3. Для получения большей экономичности двигателя сгорание топлива должно осуществляться вблизи ВМТ при минимальном объеме надпоршневого пространства, когда минимальны потери теплоты через стенки цилиндра.
В этот период времени сгорает основная масса топлива. Скорость распространения фронта горения 20…40 м/с, окончание этой фазы (точка 3) приходится на угол поворота коленчатого вала 12… 18° после ВМТ.

Если рабочая смесь перед воспламенением подвергается воздействию высоких температур и давлений, то нормальное сгорание при определенных условиях может перейти в детонационное.

Детонационное сгорание рабочей смеси возникает при несоответствии сорта бензина степени сжатия, слишком больших углах опережения зажигания, перегрузке двигателя и его перегреве, повышенном нагарообразован и и на стенках камеры сгорания.

Скорость процесса в условиях возможной детонации многократно увеличивается (до 2ООО…2 500 м/с). При этом часть рабочей смеси самовоспламеняется раньше, чем к ней подойдет фронт основного пламени. В камере сгорания возникают и распространяются волны давления, оказывающие влияние на характер изменения давления в цилиндре. Внешним признаком детонационного сгорания является появление звонких металлических стуков. При детонационном сгорании увеличиваются тепловые и механические нагрузки на детали двигателя, снижается мощность, появляется дымный выхлоп и ухудшается экономичность двигателя.

При работе двигателя с полной нагрузкой иногда наблюдается преждевременное воспламенение рабочей смеси, называемое калильным зажиганием, из-за местного перегрева стенок камеры сгорания (в результате отложения нагара на них) или электродов свечи зажигания. Такое явление может возникать при несоответствии тепловой характеристики свечи (калильного числа) степени сжатия е рабочей смеси. Это приводит к тому, что максимум давления газа достигается до прихода поршня в ВМТ, при этом снижается мощность двигателя, возможны значительный перегрев поршня и его прогорание.

Фаза III — догорание продуктов неполного окисления топлива (ниспадающая ветвь диаграммы), когда скорость выделения теплоты равна скорости теплоотвода в стенки цилиндра.

Для дизелей на развернутой диаграмме процесса сгорания рабочей смеси различают фазы I — IV (рис. 2.7).

Рис. 2.7. Развернутая диаграмма процесса сгорания рабочей смеси в дизеле:
1— точка впрыска топлива; 2 — начало фазы быстрого горения; 3 — окончание фазы быстрого горения; 4 — окончание фазы стабильного горения топлива; р — давление газа; ВМТ — верхняя мертвая точка положения поршня; I — фаза
задержки воспламенения; II — фаза быстрого горения топлива; II I — фаза стабильного горения топлива; IV — фаза догорания топлива; φ — угол поворота коленчатого вала; θ0.3 — угол опережения впрыска;——– расширение газа без
сгорания; — ► — направление хода процесса

Фаза I — от начала впрыска топлива (точка I) до начала резкого повышения давления и температуры (точка 2) — представляет собой временной период задержки воспламенения, когда топливо впрыскивается, перемешивается со сжатым воздухом, нагревается и испаряется, т.е. период подготовки рабочей смеси к воспламенению. Продолжительность фазы I зависит от ЦЧ топлива, степени сжатия рабочей смеси, формы камеры сгорания, качества распыления топлива, момента подачи топлива в цилиндр (угла опережения впрыска θ0.3), частоты вращения коленчатого вала, нагрузки на двигатель. С увеличением ЦЧ, степени сжатия ε и нагрузки на двигатель продолжительность фазы I сокращается.

Фаза II — участок 2—3 быстрого горения топлива при резком нарастании давления р и температуры Т газа. При увеличении давления со скоростью более 0,5 МПа на 1° поворота коленчатого вала отмечается жесткая работа двигателя. Чем меньше продолжительность фазы II, тем жестче работа ДВС.

Фаза III — участок 3— 4 стабильного горения топлива заканчивается достижением максимальной температуры газа. Впрыск топлива к этому моменту обычно заканчивается. Сгорание топлива происходит при увеличивающемся объеме и практически постоянном давлении, а скорость сгорания уменьшается из-за разбавления рабочей смеси продуктами сгорания, образовавшимися в период фазы II быстрого горения топлива.

Фаза IV — догорание топлива и продуктов неполного окисления (угол тем больше, чем выше нагрузка двигателя и частота вращения коленчатого вала). Температура и давление газа в конце процесса сгорания определяются при допущении смешанного цикла подведения к нему теплоты — последовательные циклы при постоянном объеме и постоянном давлении (см. участки сz’и z’z индикаторной диаграммы на рис. 2.5, б). Для смешанного цикла согласно первому началу термодинамики теплота, полученная при сгорании 1 кг топлива, кДж/кг, реализуется на участке cz следующим образом:

(2.4)

где ξ — коэффициент использования теплоты на участке сz, учитывающий потери теплоты через стенки цилиндра и неполноту сгорания топлива; hu— низшая удельная теплотворная способность топлива, кДж/кг; ΔUcz = Uz – Uс — изменение внутренней энергии газа на участке сг процесса сгорания, кДж/кг; Lсz — работа расширения газа при сгорании, кДж/кг. Изменение внутренней энергии рабочего тела на участке сz

где Сvz, Сvc — теплоемкости соответственно продуктов сгорания в точке z и рабочей смеси в точке с, кДж/(кмоль- К); Тz, Тс — абсолютная температура продуктов сгорания в точке г и рабочей смеси в точке с, К; V2, V1 Vr — количество молекулярного вещества соответственно продуктов сгорания горючей смеси, в исходном состоянии до ее горения и остаточных газов, кмоль.

Работа, кДж, расширения газов на участке cz

В этой зависимости степень повышения давления

Исключим из уравнения работы параметры р и V, воспользовавшись уравнением Менделеева— Клапейрона для состояния газа в точках z и с цикла дизеля, и получим

где R — универсальная газовая постоянная, равная работе 1 кг газа при нагревании его на1 К, R = 8,314 кДж/(кмоль К).

Разделим обе части уравнения (2.4) на (V1, + Vr). Тогда с учетом

того, что получим окончательно

Так как теплоемкости Сvz и Сvc являются функциями температур соответственно Тz и Тс, последнее выражение представляет собой квадратное уравнение относительно Tz, решением которого является температура Тz газа в конце процесса сгорания для дизеля.

Так как для бензиновых ДВС Vz = Vс, полученное выражение упрощается и при коэффициенте избытка воздуха α ≥ 1 имеет следующий вид:


источники:

http://poisk-ru.ru/s20339t12.html

http://yarpdd72.ru/kategoriya/kategoriya-f/traktory-i-avtomobili/dvigateli-vnutrennego-sgoraniya/2-2-3-process-sgoraniya/