Уравнение сгорания в общем виде

2.2.3. Процесс сгорания

Процесс сгорания в бензиновом двигателе и дизеле существенно различен из-за особенностей топлива, способа смесеобразования и воспламенения рабочей смеси. Для каждого двигателя принято рассматривать этот процесс по диаграмме с координатами р – φ, на которой этапы процесса сгорания представлены развернуто по углу поворота коленчатого вала. Для бензинового ДВС на развернутой диаграмме процесса сгорания рабочей смеси различают фазы
I — III (рис. 2.6).

Рис. 2.6. Развернутая диаграмма процесса сгорания рабочей смеси в бензиновом ДВС:
1 — момент искрового разряда; 2 — начало фазы интенсивного горения; 3 — окончание фазы интенсивного горения; ВМТ — верхняя мертвая точка положения поршня; I — фаза начала горения, равная углу α1 (задержка интенсивного горения); II — фаза интенсивного горения, равная углу α2; III — фаза догорания топлива; р — давление газа; φ — угол поворота коленчатого вала; θ0.3 — угол опережения зажигания;——– расширение газа без сгорания; — ► — направление хода процесса

Фаза I , равная углу α1— начало горения. В течение фазы I образуется фронт горения рабочей смеси от момента искрового разряда между электродами свечи в точке 1. Горение рабочей смеси начинается без повышения давления (участок 1—2). Длительность начальной фазы I определяет задержку интенсивного горения и зависит от состояния рабочего тела, угла опережения зажигания θ0.3, энергии искрового разряда. Увеличение степени сжатия ε и уменьшение угла опережения зажигания приводят к сокращению фазы I (уменьшению угла α1,). Увеличение частоты вращения коленчатого вала, снижение нагрузки на ДВС, обеднение рабочей смеси, уменьшение мощности источника воспламенения — причины удлинения фазы I (увеличения угла α1,).

Фаза II, равная углу α2, — начало интенсивного горения в точке 2 с резким повышением температуры и давления продуктов сгорания до их максимума в точке 3. Для получения большей экономичности двигателя сгорание топлива должно осуществляться вблизи ВМТ при минимальном объеме надпоршневого пространства, когда минимальны потери теплоты через стенки цилиндра.
В этот период времени сгорает основная масса топлива. Скорость распространения фронта горения 20…40 м/с, окончание этой фазы (точка 3) приходится на угол поворота коленчатого вала 12… 18° после ВМТ.

Если рабочая смесь перед воспламенением подвергается воздействию высоких температур и давлений, то нормальное сгорание при определенных условиях может перейти в детонационное.

Детонационное сгорание рабочей смеси возникает при несоответствии сорта бензина степени сжатия, слишком больших углах опережения зажигания, перегрузке двигателя и его перегреве, повышенном нагарообразован и и на стенках камеры сгорания.

Скорость процесса в условиях возможной детонации многократно увеличивается (до 2ООО…2 500 м/с). При этом часть рабочей смеси самовоспламеняется раньше, чем к ней подойдет фронт основного пламени. В камере сгорания возникают и распространяются волны давления, оказывающие влияние на характер изменения давления в цилиндре. Внешним признаком детонационного сгорания является появление звонких металлических стуков. При детонационном сгорании увеличиваются тепловые и механические нагрузки на детали двигателя, снижается мощность, появляется дымный выхлоп и ухудшается экономичность двигателя.

При работе двигателя с полной нагрузкой иногда наблюдается преждевременное воспламенение рабочей смеси, называемое калильным зажиганием, из-за местного перегрева стенок камеры сгорания (в результате отложения нагара на них) или электродов свечи зажигания. Такое явление может возникать при несоответствии тепловой характеристики свечи (калильного числа) степени сжатия е рабочей смеси. Это приводит к тому, что максимум давления газа достигается до прихода поршня в ВМТ, при этом снижается мощность двигателя, возможны значительный перегрев поршня и его прогорание.

Фаза III — догорание продуктов неполного окисления топлива (ниспадающая ветвь диаграммы), когда скорость выделения теплоты равна скорости теплоотвода в стенки цилиндра.

Для дизелей на развернутой диаграмме процесса сгорания рабочей смеси различают фазы I — IV (рис. 2.7).

Рис. 2.7. Развернутая диаграмма процесса сгорания рабочей смеси в дизеле:
1— точка впрыска топлива; 2 — начало фазы быстрого горения; 3 — окончание фазы быстрого горения; 4 — окончание фазы стабильного горения топлива; р — давление газа; ВМТ — верхняя мертвая точка положения поршня; I — фаза
задержки воспламенения; II — фаза быстрого горения топлива; II I — фаза стабильного горения топлива; IV — фаза догорания топлива; φ — угол поворота коленчатого вала; θ0.3 — угол опережения впрыска;——– расширение газа без
сгорания; — ► — направление хода процесса

Фаза I — от начала впрыска топлива (точка I) до начала резкого повышения давления и температуры (точка 2) — представляет собой временной период задержки воспламенения, когда топливо впрыскивается, перемешивается со сжатым воздухом, нагревается и испаряется, т.е. период подготовки рабочей смеси к воспламенению. Продолжительность фазы I зависит от ЦЧ топлива, степени сжатия рабочей смеси, формы камеры сгорания, качества распыления топлива, момента подачи топлива в цилиндр (угла опережения впрыска θ0.3), частоты вращения коленчатого вала, нагрузки на двигатель. С увеличением ЦЧ, степени сжатия ε и нагрузки на двигатель продолжительность фазы I сокращается.

Фаза II — участок 2—3 быстрого горения топлива при резком нарастании давления р и температуры Т газа. При увеличении давления со скоростью более 0,5 МПа на 1° поворота коленчатого вала отмечается жесткая работа двигателя. Чем меньше продолжительность фазы II, тем жестче работа ДВС.

Фаза III — участок 3— 4 стабильного горения топлива заканчивается достижением максимальной температуры газа. Впрыск топлива к этому моменту обычно заканчивается. Сгорание топлива происходит при увеличивающемся объеме и практически постоянном давлении, а скорость сгорания уменьшается из-за разбавления рабочей смеси продуктами сгорания, образовавшимися в период фазы II быстрого горения топлива.

Фаза IV — догорание топлива и продуктов неполного окисления (угол тем больше, чем выше нагрузка двигателя и частота вращения коленчатого вала). Температура и давление газа в конце процесса сгорания определяются при допущении смешанного цикла подведения к нему теплоты — последовательные циклы при постоянном объеме и постоянном давлении (см. участки сz’и z’z индикаторной диаграммы на рис. 2.5, б). Для смешанного цикла согласно первому началу термодинамики теплота, полученная при сгорании 1 кг топлива, кДж/кг, реализуется на участке cz следующим образом:

(2.4)

где ξ — коэффициент использования теплоты на участке сz, учитывающий потери теплоты через стенки цилиндра и неполноту сгорания топлива; hu— низшая удельная теплотворная способность топлива, кДж/кг; ΔUcz = Uz – Uс — изменение внутренней энергии газа на участке сг процесса сгорания, кДж/кг; Lсz — работа расширения газа при сгорании, кДж/кг. Изменение внутренней энергии рабочего тела на участке сz

где Сvz, Сvc — теплоемкости соответственно продуктов сгорания в точке z и рабочей смеси в точке с, кДж/(кмоль- К); Тz, Тс — абсолютная температура продуктов сгорания в точке г и рабочей смеси в точке с, К; V2, V1 Vr — количество молекулярного вещества соответственно продуктов сгорания горючей смеси, в исходном состоянии до ее горения и остаточных газов, кмоль.

Работа, кДж, расширения газов на участке cz

В этой зависимости степень повышения давления

Исключим из уравнения работы параметры р и V, воспользовавшись уравнением Менделеева— Клапейрона для состояния газа в точках z и с цикла дизеля, и получим

где R — универсальная газовая постоянная, равная работе 1 кг газа при нагревании его на1 К, R = 8,314 кДж/(кмоль К).

Разделим обе части уравнения (2.4) на (V1, + Vr). Тогда с учетом

того, что получим окончательно

Так как теплоемкости Сvz и Сvc являются функциями температур соответственно Тz и Тс, последнее выражение представляет собой квадратное уравнение относительно Tz, решением которого является температура Тz газа в конце процесса сгорания для дизеля.

Так как для бензиновых ДВС Vz = Vс, полученное выражение упрощается и при коэффициенте избытка воздуха α ≥ 1 имеет следующий вид:

Конспект лекции «Процесс сгорания топлива»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

10 .7. Процесс сгорания

Общие сведения.

В действительном цикле двигателя теплота к рабочему телу подводится в результате сгорания впрыскиваемого в цилиндр и распиливаемого в нем топлива. В качестве окислителя используют кислород предварительно сжатого и поэтому нагретого воздуха. В ходе реакций окисления выделяется большое количество теплоты, и образующиеся продукты сгорания (СО 2 , Н 2 О, S О 2 и др.) нагреваются до высокой температуры. Одновременно с ростом температуры повышается давление газов.

Одно из основных требований, предъявляемых к организации процесса сгорания, состоит в том, чтобы достигнуть полного сгорания всего поступившего в цилиндр топлива. Для этого, прежде всего, требуется обеспечить топливо необходимым для осуществления реакций окисления количеством воздуха.

Количество воздуха необходимое для окисления топлива

Используемые в двигателях нефтяные топлива состоят из следующих химических элементов: C≈84÷88%; H≈11÷14%; S ≈ 0,05÷3,5 %; О ≈ 0,005÷3 %.

Количество кислорода, теоретически необходимое для сгорания 1 кг твердого или жидкого топлива, состава С, Н, S и О может быть подсчитано на основании уравнений реакций окисления (горения) элементов горючей массы топлива. Углерод реагирует с кислородом по уравнению С+О 2 =СО 2 (12+32 → 44), то есть для сгорания 1 кг углерода необходимо 32/12=2,67 кг кислорода. Водород реагирует с кислородом в соответствии с уравнением 2Н 22 =2Н 2 О (4+32 → 36). Значит, для сгорания 1 кг водорода необходимо 32/4=8кг кислорода.

Сера реагирует с кислородом по уравнению S +О 2 = SO 2 (32+32 → 64), то есть для сгорания 1 кг серы требуется 32/32=1 кг кислорода. Значит, для полного сгорания 1кг топлива рассматриваемого элементного состава (в массовых процентах) потребуется кислорода (кг)

Если массовые доли перечисленных элементов обозначить соответствующими им символами, то теоретически необходимая масса воздуха для полного сгорания 1 кг топлива

[моль] (10.15)

где 1/0,21 — объемная (молярная) доля О 2 в воздухе; O/32 — число кило-молей О 2 , содержащихся непосредственно в самом топливе.

Масса 1 моль вещества — масса вещества в граммах, численно равная его атомной или молекулярной массе

Теоретически необходимая масса воздуха для сгорания 1 кг топлива

где µ в = 28,97 — молярная масса воздуха.

Коэффициент избытка воздуха

В дизеле образование горючей смеси топливо — воздух, в отличие от карбюраторного двигателя, происходит непосредственно внутри цилиндра, что вносит определенные трудности в организацию качественного перемешивания поступающего в цилиндр топлива с находящимся в нем воздухом. Необходимо также учитывать, что смесеобразование в дизеле происходит в условиях стесненной камеры сжатия и в течение очень короткого времени, составляющего в зависимости от быстроходности двигателя, сотые или тысячные доли секунды. Поэтому, чтобы в дизеле достигнуть по возможности полного сгорания топлива, необходим определенный избыток воздуха, который устанавливают экспериментально в процессе испытаний опытной конструкции двигателя в виде коэффициента избытка воздуха αэто отношение действительной массы воздуха, заключенной в цилиндр к началу процесса сгорания G в , к массе воздуха, теоретически необходимой для сгорания g ц топлива, подаваемого в цилиндр за один цикл . Последняя величина носит наименование цикловой подачи топлива.

Поскольку G 0 — масса воздуха, теоретически необходимая для сгорания 1 кг топлива, то произведение g ц G 0 будет представлять массу воздуха, теоретически необходимую для сгорания g ц топлива. Тогда

(10.17)

По опытным данным, коэффициент избытка воздуха α на номинальном режиме находится в пределах для двигателей: малооборотных 1 ,8—2,2; средне- и высокооборотных 1 ,7—2. Верхние пределы коэффициента α характерны для двигателей с наддувом. Высокооборотные двигатели работают с меньшим значением α , что объясняется возможностью при малых размерах цилиндра обеспечить более равномерную смесь. Отдельные форсированные высокооборотные двигатели работают с α = 1 ,3÷ 1,4. Особенно нежелательно уменьшение коэффициента α при работе двигателя на режиме полного хода, так как прямым следствием уменьшения избытка воздуха является ухудшение сгорания топлива, сопровождающееся образованием большого количества продуктов неполного сгорания и связанным с этим снижением экономичности работы двигателя, повышением температуры деталей ЦПГ. Внешним проявлением неполного сгорания топлива является появление сажи в выпускных газах — двигатель начинает дымить.

Термодинамические основы процесса сгорания (рис. 10.12).

Коэффициента использования теплоты ξ z .

В расчетном цикле процессу сгорания соответствуют участки индикаторной диаграммы сz и z’z. Параметры рабочего тела (газа) в точке z зависят от количества сообщаемой ему теплоты на этом участке. При подаче в цилиндр g ц топлива количество теплоты, которое теоретически может быть сообщено газу, равно g ц Q H кДж (где Q H удельная теплота сгорания, для дизельных топлив ориентировочно Q H = 41 900 кДж/кг; с увеличением плотности топлива величина Q H пропорционально снижается и у тяжелых остаточных топлив лежит в пределах 41 000—39 500 кДж/кг). В реальных условиях сгорания вследствие несовершенства смесеобразования и иных причин все поданное в цилиндр топливо не успевает сгорать на участке сz’z , возникает его физический и химический недожог. Оставшаяся часть и продукты неполного сгорания топлива догорают за точкой z на линии расширения. Поэтому к моменту прихода поршня в точку z теплоты выделяется меньше теоретически возможного количества g ц Q н и соответственно меньше сообщается газам. Более того, часть общего количества выделяющейся теплоты передается через стенки цилиндра охлаждающей воде и затрачивается на диссоциацию (распад) молекул газа.

Чтобы упростить задачу определения количества теплоты, действительно сообщаемой в процессе сгорания рабочему телу, вводится понятие коэффициента использования теплоты ξ z :

(10.18)

где , Q z — количество теплоты, сообщаемое газу в реальном процессе сгорания, до точки z ; g ц Q H — количество теплоты, которое теоретически могло бы быть сообщено газу при условии полного сгорания g ц топлива и отсутствии каких бы то ни было потерь теплоты.

Коэффициент ξ z зависит от совершенства процесса сгорания топлива, потерь теплоты в период сгорания и при прочих равных условиях определяется быстроходностью двигателя.

При расчете следует руководствоваться значениями ξ z = 0,65÷0,85. Более низкие значения указывают на наличие значительного догорания топлива на линии расширения и усиленную теплоотдачу в воду (типичны для форсированных ВОД); высокие значения ξ z = 0,80÷0,85 характерны для МОД.

Уравнения процесса сгорания.

На основании первого закона термодинамики теплота сообщаемая рабочему телу на участке индикаторной диаграммы смешанного цикла cz z (см. рис. 10.12), расходуется на повышение внутренней энергии рабочего тела (∆U) z с и на совершение работы АL z’z на участке расширения при постоянном давлении z z ?

Из этого уравнения, представляющего собой баланс теплоты в точке z , путем преобразований приходим к выражению, из которого получим температуру рабочего тела в точке z;

(10.19)

где — средняя мольная изохорная теплоемкость заряда воздуха, кДж/ (моль-К):

(10.20)

β z = 1,03 ÷ 1,04 — коэффициент молекулярного изменения, показывающий увеличение суммарного количества молекул рабочего тела при сгорании топлива на участке cz z ; — средняя молярная изобарная теплоемкость смеси «чистых» продуктов сгорания и избыточного воздуха:

(10.21)

T z — искомая температура, значение которой должно быть определено из уравнения сгорания (10.19).

Степень повышения давления при сгорании λ= p z / p c определяют на основании выбранного при расчете максимального давления сгорания p z . При выборе p z нужно ориентироваться на приведенные опытные данные и иметь в виду, что его увеличение сопряжено с ростом нагрузок на детали ЦПГ, т. е. механической напряженности двигателя. Для реализации цикла с относительно малыми значениями p z и соответственно невысокой степенью повышения давления λ необходимо уменьшить угол опережения подачи топлива, сместив всю подачу в направлении вращения вала. Благодаря этому уменьшится количество топлива, поступающего в цилиндр и сгорающего в нем до прихода поршня в ВМТ; большая часть процесса сгорания перейдет на линию расширения, а это сопряжено с уменьшением величин ξ z и Т z и снижением экономичности цикла. Таким образом, стремление понизить возникающие в деталях двигателя механические нагрузки путем снижения величин р z и λ вступает в противоречие с необходимостью обеспечить высокую экономичность рабочего цикла.

По опытным данным, значения р z и λ для двигателей:

Высокие значения р z и малые λ характерны для двигателей с высокой степенью наддува. Температура Т z обычно лежит в пределах 1227—1727 °С.

Определение V z

(10.22)

Коэффициент ρ носит наименование степени предварительного расширения, его значение определяет степень расширения рабочего тела (газа) в процессе сгорания от точки z до точки z .

Основы теплотехники

Топливо и его горение

Топливом называют горючие вещества, применяемые для получения теплоты (тепловой энергии) при их сжигании. Под сжиганием обычно подразумевают окисление горючих веществ кислородом воздуха.
Промышленным топливом считаются не все горючие вещества, а лишь те, которые удовлетворяют следующим требованиям:

  • при сгорании выделяют достаточно большое количество теплоты;
  • не дают продуктов сгорания, губительно действующих на окружающий растительный и животный мир;
  • встречаются в больших количествах в природе или легко получаются при переработке других веществ;
  • легко добываются и транспортируются на большие расстояния;
  • быстро воспламеняются.

Топливо, добываемое из недр земли в готовом виде, называют естественным , а получаемое путем переработки горючих веществ и природного топлива – искусственным . Как естественное, так и искусственное топливо подразделяют на твердое, жидкое и газообразное.

В качестве примера естественных твердых топлив можно привести ископаемый уголь, торф, горючие сланцы, дрова, отходы сельскохозяйственного производства. Искусственное твердое топливо – кокс, полукокс, пылевидное топливо, брикеты, древесный уголь.
К естественному жидкому топливу относится нефть, а к искусственному – получаемые из нефти продукты – бензин, керосин, дизельное топливо, газойль, мазут, нефтяное и котельное топливо.

По назначению топливо подразделяют на энергетическое и технологическое .
К энергетическим относят все низкосортные топлива, которые можно сжигать на электростанциях, в производственно-бытовых и других тепловых установках в натуральном виде или после переработки. Это антрацит, бурые угли, торф, природный газ, а также продукты переработки других топлив.
К технологическому топливу относят высокосортное топливо и коксующиеся угли.

По методу добычи и потребления различают местное и привозное топливо.

Составные части топлива

Топливо состоит из органической и минеральной частей.
Органическую часть топлива составляют следующие химические элементы: углерод ), водород 2), кислород 2), азот (N2) и сера (S). Топливо может состоять из смеси этих элементов или только их части.
Так, органическую массу кокса или древесного угля в основном составляет углерод, а нефтепродуктов и газового топлива – углерод, водород и кислород.

Наиболее ценные из перечисленных элементов топлива – углерод и водород.
Кислород и азот являются внутренним балластом топлива, поскольку они не горят. Сера является нежелательным компонентом топлива, несмотря на то, что сгорая, она выделяет теплоту. При сгорании этого элемента образуется сернистый газ и серная кислота, пагубно влияющие на экологию и вызывающие сильную коррозию металлов.

Минеральная часть топлива составляют вода и минеральные примеси, которые являются внешней балластной частью (внешним балластом) топлива. Содержание балластной части в топливе очень нежелательно, поскольку увеличивая массу и объем топлива, она уменьшает его тепловую ценность.
Минеральные составляющие после сжигания образуют твердый остаток – золу.

Сущность процесса горения

Горение есть окисление горючих элементов топлива кислородом, сопровождающееся выделением теплоты.
В зависимости от скорости распространения пламени различают нормальное горение и горение со взрывом . При нормальном горении скорость распространения пламени равна 15-25 м/с, а при взрывном горении – 2000-3000 м/с. Чтобы топливо начало гореть, его необходимо нагреть до определенной температуры, называемой температурой воспламенения .
Так, например, каменный уголь воспламеняется при температуре 225-375 ˚С, сухой торф – 225-300 ˚С, дрова – 350-450 ˚С, керосин – 380 ˚С, бензин – 415 ˚С, метан (СН4) – 650-700 ˚С и т. д.

При нагревании топлива до температуры воспламенения начинается распад горючей массы на составные элементы, которые затем окисляются кислородом и выделяют теплоту. Эта теплота способствует нагреву массы близлежащего топлива, в которых начинают протекать аналогичные процессы (распад и окисление) , и, таким образом, вся масса топлива, находящегося в топке, начинает гореть.
Для того, чтобы процесс горения не прекратился, выделяющаяся теплота должна поддерживать температуру топлива не ниже температуры воспламенения.

Горение может быть полным и неполным.
Полным горением называют процесс окисления горючих элементов топлива кислородом, при котором выделяются продукты, не способные гореть в дальнейшем.
Неполное сгорание топлива сопровождается выделением продуктов горения, которые в дальнейшем могут воспламеняться и сгорать повторно. Так, при полном сгорании углерода выделяется углекислый газ СО2, который в дальнейшем гореть не способен.

Однако, если углерод сгорает при недостаточном количестве кислорода, то продуктом его окисления является углекислота СО, которая может загореться при соответствующих условиях. При этом неполное горение сопровождается выделением значительно меньшего количества теплоты, т. е. считается нежелательным явлением. Для того чтобы процесс горения был полным, необходимо обеспечить подачу достаточного количества воздуха (содержащего кислород) в зону горения.
На практике, сжигая топливо, стараются придерживаться определенного баланса между количеством воздуха и топлива, поскольку избыток воздуха сопровождается потерями теплоты на его подогрев.

Количество воздуха, необходимое для полного сгорания топлива

Количество воздуха, необходимое для полного сгорания топлива, определить несложно, если известно процентное содержание в топливе основных горючих элементов – углерода, водорода, серы и кислорода.
Так как атомная масса углерода 12, а кислорода – 16, то для получения углекислого газа СО2 необходимо 12 частей углерода соединить с 32 частями кислорода, т. е. на одну массовую долю углерода должно приходиться 2,67 частей кислорода.
Зная атомную массу водорода и серы, а также формулы продуктов их полного окисления, можно аналогично рассчитать необходимое количество кислорода для сжигания 1 части любого горючего элемента.

При определении количества воздуха, необходимого для полного горения, следует учитывать, что в топливе тоже содержится некоторое количество кислорода, а также то, что массовая доля кислорода в воздухе — 23,2 %. В общем случае формула для определения массового количества воздуха для полного сгорания топлива имеет вид:

где: Ср , Нр , Sр , Ор – соответственно массовое содержание углерода, водорода, серы и кислорода в топливе.

При сгорании топлива часть кислорода воздуха не успевает вступить в реакцию окисления, поэтому для обеспечения полного сгорания топлива следует к нему подводить воздух с некоторым избытком по сравнению с теоретически необходимым количеством. Отношение действительного количества воздуха к теоретически необходимому количеству называют коэффициентом избытка воздуха . На практике этот коэффициент (в зависимости от вида топлива) может принимать значения от 1,05 (газообразное и пылевидное топливо) до 1,8 (твердое топливо) .

Теплота сгорания топлива

Важнейшая характеристика топлива – теплота его сгорания – количество теплоты, выделившейся при полном сгорании единицы количества топлива (для жидких и твердых топлив – кг, для газообразных – м 3 ) . Различают высшую и низшую теплоту сгорания.
Высшей теплотой сгорания Qв называют теплоту, выделяемую при полном сгорании единицы количества топлива, в результате которого образующаяся влага конденсируется и выделяется в виде жидкости из продуктов сгорания.
Если в результате сгорания единицы количества топлива образуемая влага остается в продуктах сгорания в парообразном состоянии, то выделяемую при этом теплоту называют низшей теплотой сгорания Qн . Эта величина меньше высшей теплоты сгорания топлива на теплоту парообразования (конденсации) влаги, образуемой при сжигании единицы количества топлива.

Теплоту сгорания топлива, кДж/кг , можно определить опытным путем (при сжигании порции топлива в специальном приборе – калориметре) или расчетом (по формулам Менделеева) , если известен элементарный состав топлива.

Например, для твердого топлива:

Qв = 339С + 1250Н – 108,85(О – S) ;

для жидкого топлива:

где: С , Н , О , S и W – соответственно процентное содержание углерода, водорода, кислорода, серы и влаги в рабочем топливе.

Условное топливо

При расчете расхода топлива, а также топливных ресурсов пользуются понятием условное топливо .
Это реальное топливо, теплота сгорания которого равна 29,3 МДж/кг.
Для перевода любого топлива в условное, пользуются тепловым эквивалентом, который получается от деления теплоты Qрц сгорания данного топлива на теплоту сгорания условного топлива, т. е. на 29300 кДж/кг или 29,3 МДж/кг.
Так, например, для торфа Эт = 8500/29300 = 0,29, т. е. 1 тонна торфа по своей тепловой ценности равноценна 0,29 тонны условного топлива.

Температура горения топлива

Следует различать теоретическую и действительную температуру горения.
Теоретической температурой горения называют максимальную температуру, которую способно давать данное топливо при полном сгорании с теоретически необходимым количеством воздуха. Ее определяют опытным путем, или аналитически, используя формулы, в которых учитывается массовая доля и теплотворная способность каждого горючего элемента в топливе. При этом теоретическая температура горения будет равна отношению теплоты, полученной от сгорания единицы топлива, к сумме произведений массовых составляющих горючих элементов на их теплотворную способность.
Теоретически определенная температура горения топлива всегда выше действительной, поскольку при расчетах не учитывается ее понижение из-за потерь теплоты на лучеиспускание, избыток воздуха при сжигании, неполное сгорание топлива и т. п.

Действительная температура горения (при коэффициенте избытка воздуха равном 1,0) : антрацита — 2270 ˚С, торфа – 1700 ˚С, мазута – 1125 ˚С, природного газа – 2000 ˚С.

Способы сжигания топлива

В котельной практике известны слоевой, факельный и вихревой способы сжигания топлива.

Слоевой способ сжигания топлива (рис. 1а) заключается в следующем. Загруженное в топку топливо распределяется ровным слоем по колосниковой решетке, через которую проходит воздух, встречающий на своем пути неподвижный или движущийся слой горящего топлива.
При взаимодействии с топливом воздух превращается в газовоздушный поток, который, пройдя через топочное пространство, выходит наружу. Для предотвращения уноса топлива необходимо, чтобы вес частичек топлива был больше силы газовоздушного потока. Однако, при слишком больших размерах кусков топлива замедляется процесс горения и уменьшается количество теплоты, получаемой в единицу времени, поэтому оптимальный размер кусков – 20-30 мм.

Основным достоинством слоевого способа сжигания твердого топлива является наличие на колосниках запаса горящего топлива, обеспечивающего устойчивость протекания процесса. Существенным недостатком этого способа является необходимость использования твердого топлива с оптимальными размерами кусков, что требует предварительной их сортировки и дробления.

Факельный способ сжигания топлива (рис. 1б) , в отличие от слоевого, заключается в том, что частицы топлива движутся вместе с газовоздушным потоком в топочном пространстве. Поэтому масса частиц должна быть как можно меньше, и они должны удерживаться в газовоздушном потоке.
Этим обеспечивается очень тщательное перемешивание частичек топлива с воздухом, интенсивное их горение, получается более однородный, устойчивый факел горения и происходит наиболее полное выгорание горючих элементов, составляющих горючую массу топлива. Поэтому при факельном способе применяют твердое топливо в виде очень мелких частичек (пыли) , размеры которых составляют доли миллиметра.

Существенный недостаток этого способа – малая скорость обтекания частиц топлива газовоздушным потоком, которая не позволяет значительно увеличить интенсивность горения, а также большая чувствительность к изменению режима работы, поскольку в топочном пространстве постоянно находится небольшое количество (запас) топлива. Поэтому регулирование процесса возможно при одновременном изменении подачи топлива и воздуха.

Вихревой способ сжигания топлива (рис. 1в) заключается в создании в топочном пространстве вихря, благодаря которому топливо, поступающее в топку, подхватывается газовоздушным потоком и движется вместе с ним по определенной траектории до полного выгорания горючих элементов из горючей массы.
Вихревое движение топлива в газовоздушном потоке способствует более длительному нахождению топлива в топочном пространстве, что создает условия для полного сгорания частиц размером 3-5 мм и для получения более устойчивого горения, чем при факельном способе сжигания.

Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)

Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):


источники:

http://infourok.ru/konspekt-lekcii-process-sgoraniya-topliva-686636.html

http://k-a-t.ru/teplotexnika/8_gorenie/index.shtml