Уравнение шкалы электромеханических измерительных приборов

Уравнение шкалы электромеханических измерительных приборов

АНАЛОГОВЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ.

АНАЛОГОВЫЕ ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ.

Структурную схему аналогового электромеханического прибора в общем виде можно представить как:

Измерительная цепь – обеспечивает преобразование электрической величины Х в промежуточную электрическую величину Y, функционально связанную с величиной Х и пригодную для непосредственной обработки измерительным механизмом.

Измерительный механизм – основная часть прибора, предназначенная для преобразования электромагнитной энергии в механическую, необходимую для создания угла поворота a.

Отсчетное устройство – состоит из указателя, связанного с измерительным механизмом и шкалы.

Указатели – бывают стрелочные (механические) и световые.

Шкала – совокупность отметок, представляющих ряд последовательных чисел вдоль какой либо линии.

По начертанию шкалы бывают прямолинейные (горизонтальные или вертикальные), дуговые (при дуге 180°) и круговые (при дуге > 180°).

Цена деления шкалы определяются как:

где: Х – конечное значение шкала на данном пределе измерения,

N . число отметок шкалы.

Рассмотрим общий принцип действия измерительного механизма.

Обобщенная механическая схема измерительного механизма представлена на рисунке.

1 – ось, 2 – электромеханический преобразователь, приведенный к общему центру масс, 3 – стрелка, 4 – пружина, 5 – подшипниковые опоры.

Дифференциальное уравнение моментов, описывающее работу измерительного механизма, имеет вид:

где J – момент инерции подвижной части измерительного механизма,

— угол отклонения подвижной части,

— угловое ускорение.

На подвижную часть (при движении) воздействуют следующие составляющие моментов:

Вращающий момент – М- определяется скоростью изменения энергии электромагнитного поля , сосредоточенной в механизме, по углу отклонения .

Противодействующий момент — М— создается, как правило, при помощи спиральных пружин и растяжек

где: W – удельный противодействующий момент на единицу угла закручивания пружины (определяется её материалом, длиной и т.д.).

Момент успокоения – Мусп— момент сил сопротивления движению. Всегда направлен встречно вращающему моменту.

р- коэффициент успокоения (демпфирования) подвижной части.

После подстановки всех составляющих момента в основное уравнение получим:

или

В статическом режиме, т.е когда стрелка прибора находится в неподвижном состоянии при каком то угле отклонения a, можно записать:

По типу измерительного механизма приборы делятся на:

магнитоэлектрический механизм;

магнитоэлектрический механизм логометрического типа;

электромагнитный механизм;

электромагнитный механизм логометрического типа;

электромагнитный поляризованный механизм;

электродинамический механизм;

электродинамический механизм логометрического типа;

ферродинамический механизм;

ферродинамический механизм логометрического типа;

электростатический механизм:

измерительный механизм индукционного типа.

Общие технические требования ко всем электроизмерительным приборам нормируются

Условные обозначения определены в

ПРИБОРЫ МАГНИТОЭЛЕКТРИЧЕСКОГО ТИПА.

Общее устройство прибора электромагнитного типа показано на рисунке:

На рисунке а показана схема магнитоэлектрического механизма с подвижным магнитом, а на рисунке б- с неподвижным магнитом.

На рисунке приняты следующие обозначения:

стрелка; 2- катушка; 3- постоянный магнит; 4- пружина; 5- магнитный шунт; 6- полюсные наконечники.

Вывод уравнения шкалы прибора.

Уравнением шкалы называется математическая зависимость, дающая связь между измеряемой величиной и углом отклонения стрелки прибора.

Обозначим потокосцепление, связанное с катушкой как , тогда:

=I, где — энергия электромагнитного поля запасенной в измерительном механизме, I- величина тока, протекающего по катушке.

Если катушка имеет n витков, длина и ширина катушки соответственно l и b, магнитная индукция пронизываюшая катушку –В уравнение для потокосцепления в полном виде можно записать как:

или где S активная площадь катушки.

Подставив эти уравнения в уравнение для статики получим:

После подстановки имеем:

Тогда установившийся угол отклонения aу можно записать как:

или

где Sп— чувствительность прибора.

Уравнение шкалы показывает, что шкала магнитоэлектрического измерительного механизма — линейна.

Следует отметить, что подвижная часть магнитоэлектрического механизма обладает относительно большим моментом инерции. Поэтому при включении в цепь переменного синусоидального тока, среднее значение которого за период равно нулю, средний вращающий момент также

равен нулю. Следовательно, данный механизм, примененный непосредственно может измерять только постоянные токи.

Магнитоэлектрический механизм логометрического типа.

Механизм устроен следующим образом: первая и вторая катушки формируют вращающие моменты М1 и М2 направленные всегда встречно друг другу.

Индексами 1- обозначены параметры, относящиеся к первой катушке, а индексами 2- ко второй.

Если моменты окажутся равными, тогда можно записать:

Откуда можно записать уравнение шкалы магнитоэлектрического логометра.

или

Применяются логометрические механизмы, например в омметрах.

Необходимо отметить, что в некоторых типах логометров в отключенном состоянии стрелка может находиться в произвольном положении.

Достоинства магнитоэлектрических приборов:

Большой вращающий момент при малых токах, высокие классы точности, малое самопотребление.

Недостатки магнитоэлектрических приборов:

Сложность конструкции, высокая стоимость, невысокая перегрузочная способность,

Электромеханические приборы

По физическому принципу, положенному в основу построения и конст­руктивному исполнению, эти приборы относятся к группе аналоговых средств измерения, показания которых являются непрерывной функцией из­меряемой величины.

Электромеханические приборы непосредственной оценки измеряемой величины представляют класс приборов аналогового типа, обладающих рядом положительных свойств: просты по устройству и в эксплуатации, обладают высокой надежностью и на переменном токе реагируют на среднее квадратическое значение напряжения. Последнее обстоятельство позволяет измерять наиболее информативные параметры сигнала без ме­тодических ошибок. Электромеханические измерительные приборы строят по обобщенной структурной схеме, показанной на рис, 5.2.

Рис. 5.2. Структурная схема электромеханического прибора

Измерительная схема электромеханического прибора состоит из совокупности сопротивлений, индуктивностей, емкостей и других элементов электрической цепи прибора и осуществляет количественное или качествен­ное преобразование входной величины х: в электрическую величинух’, на которую реагирует измерительный механизм. Последний преобразует элек­трическую величину х’ в механическое угловое или линейное перемещение α, значение которого отражается на шкале отсчетного устройства, проградуированной в единицах измеряемой величины N(x).Для этого необходимо чтобы каждому значению измеряемой величины соответствовало одно и только одно определенное отклонение α. При этом параметры схемы и измерительного механизма не должны меняться при изменении внешних условий: температуры окружающей среды, частоты питающей сети и дру­гих факторов.

Классификацию электромеханических приборов производят на основа­нии типа измерительного механизма. Наиболее распространенными в прак­тике радиотехнических измерений являются следующие системы: магнитоэлектрическая, электромагнитная, электродинамическая, элек­тростатическая.

Условное обозначение типа измерительной системы наносится на шкале прибора или средства измерения.

Данные измерительные системы представлены в табл. 5.2, где приведены также формулы передаточной функции (уравнения шкалы) измерительного механизма и ряд его технических характеристик.

В добавление к помещенным в табл. 5.2 сведениям и рисункам сделаем следующие пояснения.

Наименование системы, функциональная схемаУравнение шкалы, применениеЧастотный диапазон, потребление мощно­сти, класс точности
Магнитоэлектрическая: 1 — рамка с измеряемым током и стрелкой; 2 — неподвижный сердечник; 3 — полюсные наконечники 4 — возвратная пружина где Ψ0= BSω ; В — индукция в зазоре; S — площадь рамки; ω — число витков рамки; W- удельный противодей­ству­ющий момент, создаваемый пру­жиной В основном, используются как: Переносные, лабораторные, мно­го­пре­дель­ные амперметры, вольтмет­ры посто­янного токаПостоянный ток Класс точности 0,05. 0,5 Рсо6 ≈10 -5 . 10 -4 Вт
Электромагнитная L — индуктивность катушки В основном, используются как: Щитовые и лабораторные переносные низкочастотные амперметры; вольтметрыF=0. 5 кГц Класс точности 0,5. 2,5 Рсо6 ≈1…6 Вт
Электродинамическая 1 — неподвижная катушка 2 подвижная катушка где θ — угол между токами; М — коэффициент взаимной индук­тив­ности катушек В основном, используются как: Лабораторные приборы низко­частотные высокого класса точностиF=0. 5кГц Класс точности 0,1. 0,2 Рсо6 ≈1 Вт
Электростатическая С — емкость между пластинами В основном, используются как: Высокочастотные лабораторные и высоковольтные вольтметрыF=0. 30 MГц Класс точности 0,5. 1,5 Рсо6

Магнитоэлектрическая система. В этой системе измеритель­ный механизм состоит из проволочной рамки с протекающим в ней током, помещенной в поле постоянного магнита (магнитопровода). Поле в зазоре, где находится рамка, равномерно за счет особой конфигурации магнитопро­вода. Под воздействием тока I рамка вращается в магнитном поле, угол пово­рота α ограничивают специальной пружиной, поэтому передаточная функция (часто называемая уравнением шкалы) линейна:

где Ψ0 — удельное потокосцепление, определяемое параметрами рамки и магнитной индукцией; W — удельный противодействующий момент, созда­ваемый специальной пружиной.

На основе магнитоэлектрического механизма создаются вольтметры, амперметры, миллиамперметры и другие измерительные приборы, и их структурное построение главным образом определяется измерительной схемой. Измерительные приборы магнитоэлектрической системы имеют достаточно высокую точность, сравнительно малое потребление энергии из измерительной цепи, высокую чувствительность, но работают лишь на по­стоянном токе.

Для расширения пределов измерения токов амперметрами и напряжений вольтметрами применяют шунты и добавочные сопротивления, которые включают соответственно параллельно и последовательно индикаторам в схемы этих приборов.

Гальванометры. Особую группу измерителей тока составляют высоко­чувствительные магнитоэлектрические приборы — нуль-индикаторы, схемы сравнения, или указатели равновесия, называемые гальванометрами. Их за­дача показать наличие или отсутствие тока в цепи, поэтому они работают в начальной точке шкалы и должны обладать большой чувствительностью. Гальванометры снабжают условной шкалой и не нормируют по классам точ­ности.

Чувствительность гальванометров выражается в мм или делениях (на­пример, Si≈10 9 мм/А). Такая высокая чувствительность достигается за счет особой конструкции прибора.

Поскольку чувствительность гальванометров очень высока, их градуировочная характеристика нестабильна и зависит от совокупности внешних влияющих факторов. Поэтому при выпуске на производстве чувствительные гальванометры не градуируют в единицах измеряемой физической величины и им не присваивают классы точности. В качестве же метрологических ха­рактеристик гальванометров обычно указывают их чувствительность к току или напряжению и сопротивление рамки.

Современные гальванометры позволяют измерять токи 10 -5 . 10 -12 А и напряжения до 10 -4 В.

Электромагнитная система. Принцип действия электромагнит­ной системы основан на взаимодействии катушки с ферромагнитным сердеч­ником. Ферромагнитный сердечник втягивается в катушку при любой поляр­ности протекающего по ней тока. Это обусловлено тем, что ферромагнетик располагается в магнитном поле катушки так, что поле усиливается. Следова­тельно, прибор электромагнитной системы может работать на переменном токе. Однако электромагнитные приборы являются все-таки низкочастотны- ми, так как с ростом частоты сильно возрастает индуктивное сопротивление катушки.

Достоинствами приборов электромагнитной системы являются простота конструкции, способность выдерживать значительные перегрузки, возмож­ность градуировки приборов, предназначенных для измерений в цепях пере­менного тока, на постоянном токе. К недостаткам приборов этой системы можно отнести большое собственное потребление энергии, невысокую точ­ность, малую чувствительность и сильное влияние магнитных полей.

На практике применяют амперметры электромагнитной системы с преде­лами измерения от долей ампера до 200 А, и вольтметры — от долей вольта до сотен вольт.

Приборы электромагнитной системы применяют в основном как щито|вые амперметры и вольтметры переменного тока промышленной частоты. Класс точности щитовых приборов 1,5 и 2,5. В некоторых случаях они используются для измерений на повышенных частотах: амперметры до 8000 Гц, вольтметры до 400 Гц.

Пример 1.Класс точности большинства электромеханических приборов обо­значен одной цифрой ±р. Покажем, как пользоваться указанным значением класса точности на примере задачи.

При измерении напряжения сети вольтметром электромагнитной системы класса точности 1,5 со шкалой, максимальное значение которой UN=300 В (номинальное значение), показания прибора составляли 220 В. Чему в действительности может быть равна измеренная величина напряжения?

Решение. Полагая, что наибольшая приведенная основная по­грешность составляет р = ± 1,5 %, определяем допускаемую абсолютную погреш­ность:

Следовательно, истинное значение измеряемого напряжения лежит в границах: (220 — 4,5) В

Дата добавления: 2016-03-15 ; просмотров: 7440 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Аналоговые электромеханические измерительные приборы (АЭМП).

ЛЕКЦИЯ 5.

Электроизмерительные приборы.

Классификация измерительных приборов по обобщенным признакам.

Наиболее распространенными средствами измерений являются измерительные приборы. Они разнообразны вследствие различных измерительных задач и требований, предъявляемых к приборам.

Измерительные приборы представляют собой различное сочетание измерительных преобразователей, выполняющих определенные функции, и отсчетного устройства. Структурная схема приборов показывает функциональное взаимодействие основных его преобразователей.

По физическим явлениям, на которых основана работа приборов, их можно разделить на электромеханические и электронные приборы.

Классификация электромеханических приборов зависит от способа преобразования электромагнитной энергии входного сигнала в механическую энергию углового перемещения подвижной части.

Электронные измерительные приборы представляют собой сложные устройства, содержащие большое число преобразователей, выполняющих функции генерирования, усиления, выпрямления, преобразования электрических сигналов (например, аналогового сигнала в дискретный и наоборот), сравнения и др. Электронные приборы разрабатываются на активных элементах (транзисторах, микросхемах) и на пассивных элементах (резисторах, конденсаторах, катушках индуктивности). В них энергия для механического перемещения указателя поступает не от источника измеряемого сигнала, а от вспомогательного источника энергии.

По виду выдаваемой информацииразличают аналоговые и цифровые приборы.

Аналоговый прибор – измерительный прибор, показания которого являются непрерывной функцией изменений измеряемой величины. В этих приборах непрерывная измеряемая величина вызывает подобное ей непрерывное отклонение указателя по шкале. К аналоговым приборам относятся приборы, у которых указатель жестко связан с подвижной частью измерительного механизма.

Цифровой прибор – измерительный прибор, автоматически вырабатывающий дискретные сигналы измерительной информации, показания которых представлены в цифровой форме.

По схеме преобразованияразличают структурные схемы измерительных приборов прямого действия и сравнения.

В приборах прямого действия преобразование сигнала измерительной информации происходит только в одном направлении, а в приборах сравнения кроме прямого преобразования используется обратное преобразование (обратная связь).

По способу выдачи измерительной информацииизмерительные приборы делятся на показывающие и регистрирующие.

Показывающий прибор – измерительный прибор, допускающий отсчитывание показания, регистрирующий – прибор, в котором предусмотрена регистрация показаний. Регистрирующий прибор, в котором предусмотрена запись показаний в форме диаграмм, называют самопишущим, а печатание показаний в цифровой форме – печатающим. Приборы могут либо выдавать информацию о текущем значении измеряемой величины, либо измеряемую величину интегрировать во времени или по другой независимой переменной (интегрирующие приборы), либо суммировать показания двух или нескольких величин, подводимых к ним по различным каналам (суммирующие приборы).

По характеру установки на месте примененияприборы могут быть стационарные и переносные; по степени защищенности – обыкновенные, пыле-, водо- и брызгозащищенные, герметические и др.

Аналоговые электромеханические измерительные приборы (АЭМП).

Большинство используемых сегодня в технологических процессах стационарных измерительных приборов – это классические аналоговые электромеханические приборы. Их метрологические и эксплуатационные характеристики вполне достаточны для решения основных задач технических измерений.

Широко распространены электромеханические вольтметры, амперметры, омметры, фазометры, ваттметры, счетчики активной и реактивной энергии.

Структурную схему аналогового электромеханического прибора в общем виде можно представить как:

Измерительная цепь обеспечивает преобразование электрической величины Х в промежуточную электрическую величину Y, функционально связанную с величиной Х и пригодную для непосредственной обработки измерительным механизмом (ИМ).

По характеру преобразования измерительная цепь может представлять собой совокупность элементов (резисторов, конденсаторов, выпрямителей, термопар и др.). Различные измерительные цепи позволяют использовать один и тот же ИМ при измерениях разнородных величин, меняющихся в широких пределах.

Измерительный механизм – основная часть прибора, предназначенная для преобразования электромагнитной энергии в механическую, необходимую для создания угла отклонения a его подвижной части относительно неподвижной

Подвижная часть ИМ представляет собой механическую систему с одной степенью свободы относительно оси вращения. Момент количества движения равен сумме моментов, действующих на подвижную часть.

Дифференциальное уравнение моментов, описывающих работу ИМ, имеет вид

, (5.1)

где — момент инерции подвижной части; α – угол отклонения подвижной части; — угловое ускорение.

На подвижную часть ИМ при ее движении воздействуют:

Вращающий момент МВ, определяемый для всех АЭМП скоростью изменения энергии электромагнитного поля WЭ, сосредоточенной в механизме, по углу отклонения α подвижной части:

. (5.2)

Противодействующий момент МП, создаваемый механическим путем с помощью спиральных пружин, растяжек, подводящих проводов и пропорциональный углу отклонения α подвижной части:

где W – удельный противодействующий момент на единицу угла закручивания пружины (зависит от материала пружины и ее геометрических размеров).

Момент успокоения МУСП, т.е. момент сил сопротивления движению, всегда направленный навстречу движению и пропорциональный угловой скорости отклонения:

МУСП = , (5.4)

где Р – коэффициент успокоения (демпфирования).

Подставив (5.2)-(5.4) в (5.1), получим дифференциальное уравнение отклонения подвижной части механизма:

,

.

В установившемся режиме

и в этом случае установившееся отклонение подвижной части ИМ определяется равенством вращающего и противодействующего моментов, т.е. МВ = МП.

Подставив в равенство МВ = МП аналитические выражения моментов, получим уравнение шкалы прибора, показывающее зависимость угла отклонения α подвижной части от значения от значения измеряемой величины и параметров ИМ.

Отсчетное устройство состоит из указателя, связанного с измерительным механизмом и шкалы.

Указатели бывают стрелочные (механические) и световые.

Шкала – совокупность отметок, представляющих ряд последовательных чисел вдоль какой-либо линии. По начертанию шкалы бывают прямолинейные, дуговые и круговые.

Большинство аналоговых электромеханических измерительных приборов являются измерителями электрического тока. Исключение составляют приборы основанные на использовании электростатического эффекта для измерения электрического напряжения. Однако, дополнительные схемные решения позволяют применять их для измерения различных электрических величин и параметров электрических цепей. Кроме того, они находят широкое применение в структурах средств измерения неэлектрических величин.

В зависимости от способа преобразования электромагнитной энергии в механическое угловое перемещение подвижной части электромеханические приборы делятся на магнитоэлектрические, электромагнитные, электродинамические, электростатические. Как я уже говорила, все из них, кроме электростатических, являются измерителями электрического тока.

В таблице 5.1 показаны принципы действия и функции преобразования наиболее часто используемых на практике аналоговых электромеханических измерительных приборов. Среди них заслуживает подробного рассмотрения прибор магнитоэлектрической системы, который широко используется в качестве указателя электронных измерительных приборов, систем автоматизации и контроля параметров объекта.


источники:

http://helpiks.org/7-39413.html

http://poisk-ru.ru/s12758t3.html