Уравнение шредингера для туннельного эффекта

Уравнение шредингера для туннельного эффекта

Прохождение частиц сквозь потенциальный барьер. Туннельный эффект

Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 5.4) для одномерного (по оси х) движения частицы.

Для потенциального барьера прямоугольной формы высоты U и ширины l можно записать:

При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером при E > U, либо отразится от него (E U имеется также отличная от нуля вероятность, что частица окажется в области x > l, т.е. проникнет сквозь барьер. Такой вывод следует непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при данных условиях задачи.

Уравнение Шредингера для состояний каждой из выделенных областей имеет вид:

,(5.4.1)
.(5.4.2)

Общее решение этих дифференциальных уравнений:

(5.4.3)

В данном случае, согласно (5.4.2), – мнимое число, где

Можно показать, что A1 = 1, B3 = 0, тогда, учитывая значение q,получим решение уравнения Шредингера для трех областей в следующем виде:

(5.4.4)

В области 2 функция (5.4.4) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени не мнимые, а действительные.

Качественный анализ функций Ψ1(x), Ψ2(x), Ψ3(x) показан на рис. 5.4. Из рисунка следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т.е. с той же частотой, но с меньшей амплитудой.

Таким образом, квантовая механика приводит к принципиально новому квантовому явлениютуннельному эффекту, в результате которого микрообъект может пройти через барьер.

Коэффициент прозрачности для барьера прямоугольной формы .

Для барьера произвольной формы .

Прохождение частицы сквозь барьер можно пояснить соотношением неопределенностей. Неопределенность импульса на отрезке Δx = l составляет Связанная с этим разбросом кинетическая энергия может оказаться достаточной для того, чтобы полная энергия оказалась больше потенциальной и частица может пройти через барьер.

С классической точки зрения прохождение частицы сквозь потенциальный барьер при E

4.7. Отражение и туннелирование частиц

До сих пор мы имели дело с задачами на связанные состояния. Рассмотрим теперь примеры инфинитного движения частиц, когда они могут уходить на бесконечно большие расстояния. В простейшем случае движения вдоль одной из координатных осей задача рассеяния частиц сводится к задаче взаимодействия частицы с неким потенциальным барьером. Мы рассмотрим несколько типов барьеров простой прямоугольной формы, чтобы выделить характерные особенности этого типа квантовых явлений.

Низкий бесконечный барьер

Потенциальная энергия имеет вид

Слово «низкий» означает, что высота барьера меньше энергии частицы (рис. 4.12).

Рис. 4.12. Низкий потенциальный барьер: пунктиром показаны энергия налетающей слева частицы,
цифрами
номера областей с различной потенциальной энергией

Решим уравнение Шредингера отдельно для каждой из областей. В области 1 потенциальная энергия равна нулю, и мы получаем то же самое уравнение (4.22), что и для свободной частицы, и его общее решение в уже известном виде

где и амплитуды падающей и отраженной волн соответственно.

В области 2 уравнение Шредингера имеет вид

В этой области меняется кинетическая энергия (и импульс) частицы, и мы должны ввести другой волновой вектор (обозначим его в отличие от прежнего )

Тогда очевидно, что решение уравнения Шредингера в области 2 будет иметь тот же вид, что и для области 1 с заменой на . Однако из физических соображений ясно, что в области 2 не может быть волны, распространяющейся справа налево (в бесконечно удаленной точке ей не от чего отражаться). Поэтому волновая функция в этой области соответствует прямой волне

По сути дела, здесь мы снова использовали некое граничное условие, хотя и иное, нежели для задачи о связанном состоянии. Нам осталось определить только амплитуды волн .

Рис. 4.13. Схематический характер волновой функции частицы для случая низкого потенциального барьера

Для этого мы должны вспомнить, что и — значения одной волновой функции в разных пространственных областях. Эта волновая функция должна быть непрерывна вместе со своей первой производной по переменной x. Непрерывность функции в точке x=0 означает, что должно выполняться условие

Непрерывность первой производной волновой функции означает выполнение равенства

Решение двух полученных уравнений дает

Амплитуда падающей волны остается неопределенной: ясно, что она зависит от интенсивности потока частиц! Важны не сами амплитуды, а отношение R квадратов их модулей, то есть интенсивностей отраженной и падающей волн:

Величина R называется коэффициентом отражения частицы от низкого барьера. По физическому смыслу это вероятность отражения частицы от барьера. Соответственно, величина

,

называемая коэффициентом прохождения, определяет вероятность проникновения частицы в правую область. Удивительно, что частица имеет шанс отразиться от низкого барьера и повернуть назад. В классической физике частица всегда (R = 0) проникает за барьер, если ей хватает на это энергии. Например, с точки зрения классической физики электрон с энергией 10 эВ, влетевший в конденсатор с тормозящим полем В 5 эВ, безусловно, преодолеет торможение и продолжит свой путь с уменьшенной энергией равной 5 эВ. В квантовой же теории не равна нулю вероятность того, что электрон отразится от поля конденсатора и повернет назад. Коэффициент отражения можно измерить, направляя поток частиц на барьер и измеряя долю отраженных от него частиц.

Высокий бесконечный барьер

Потенциальная энергия имеет тот же вид, но энергия частицы меньше высоты барьера: с некой вероятностью частица может отразиться от барьера. Наиболее интересен случай <(рис. 4.16).

Рис. 4.16. Потенциальный барьер конечной ширины

Мы видели, что интенсивность (квадрат модуля амплитуды) волны убывает под барьером и на расстоянии становится меньше в раз. Но в этой точке барьер кончается, так что волна выйдет на свободу справа от барьера с уменьшенной амплитудой.

Отношение интенсивностей выходящей и падающей волн называется коэффициентом прозрачности (он же равен вероятности прохождения через барьер). Из приведенных выше рассуждений следует приближенное выражение для :

Получая мы опустили некие множители перед экспонентой, что по физическому смыслу означает пренебрежение процессами, когда частица, прежде чем выйти из-под барьера, испытает многократное отражение от его стенок. При высоком и широком барьере вклад таких процессов невелик и сделанное приближение оправдано.

Проникновение частицы сквозь конечный потенциальный барьер возможно в квантовой механике, но категорически запрещено в классической. В самом деле, формально величина играет роль импульса (мнимого), так что кинетическая энергия

становится отрицательной. Дело спасают соотношения неопределенностей. Модуль (мнимой) скорости частицы имеет порядок

так что время туннелирования

Неопределенность в кинетической энергии

Из полученных результатов для коэффициента прозрачности видно, что эффект туннелирования заметен, если

Получается, что неопределенность в кинетической энергии частицы под барьером больше самого значения кинетической энергии. Поэтому нельзя утверждать, что под барьером кинетическая энергия отрицательна. Скорее, она «размыта» настолько, что частица может как бы перепрыгнуть не слишком большой барьер. В случае же высокого и широкого барьера «размытость» кинетической энергии должна быть очень велика, что возможно лишь на очень короткое время, за которое частица не успевает проскочить за барьер. Поэтому в этом случае коэффициент прозрачности становится экспоненциально малым. По-другому: туннелирование заметно при ширине барьера порядка длины волны де Бройля.

Рис. 4.17. Волновая функция частицы для случая потенциального барьера конечной

Барьер произвольной формы можно представить в виде последовательности прямоугольных барьеров; теорема об умножении вероятностей ведет к появлению суммы (интеграла) в экспоненте, так что вместо (4.34) имеем

Интеграл берется между точками поворота

в которых классическая частица должна изменить направление движения.

Пример 1. Электрон находится в одномерной потенциальной яме шириной (рис. 4.18) и имеет энергию . С одной стороны ямы потенциальная энергия бесконечна, а с другой стороны выйти из ямы электрону мешает потенциальный барьер высотой и шириной . Оценим время жизни электрона в яме.

Рис. 4.18. Частица в потенциальной яме, образованной непроницаемым препятствием и конечным барьером

Скорость электрона в яме

и за промежуток времени t он подойдет к барьеру

При каждом подходе вероятность туннелирования равна D, так что вероятность туннелирования за время t равна

Вероятность увеличивается с ростом промежутка времени t. При некотором значении вероятность туннелирования станет равной единице, и электрон вырвется из ямы. Отсюда получаем для времени жизни электрона в яме оценку:

Теперь остается подставить численные данные. Для упрощения вычислений имеет смысл отдельно рассчитать коэффициент прозрачности и предэкспоненциальный множитель. Имеем

Теперь осталось рассчитать коэффициент прозрачности:

Даже по масштабам микромира это время мало: прежде чем электрон просочится сквозь барьер, свет успеет пройти расстояние всего лишь в 0,7 мкм.

Прозрачность барьера сильно зависит от энергии частицы в яме и от ширины и высоты барьера. Например, при увеличении ширины барьера в два раза новый коэффициент прозрачности будет равен, как легко догадаться, квадрату старого. Для электрона тогда получится значение = 0,0013 и его время жизни в яме увеличится до . Это и объясняет отсутствие туннелирования в обычном мире с его высокими и широкими потенциальными барьерами.

Пример 2. Решим предыдущий пример, поместив вместо электрона в ту же потенциальную яму протон.

Чтобы не решать аналогичную задачу с самого начала, можно воспользоваться результатами предыдущего примера. Протон массивнее электрона в 1837 раз. В коэффициент прозрачности масса частицы входит под квадратным корнем в показателе экспоненты. При изменении массы в n раз в показателе экспоненты появится множитель

и новый коэффициент прозрачности будет равен старому, возведенному в степень

Используя данные предыдущего примера, получаем

Предэкспоненциальный множитель также умножится на

и время жизни протона в потенциальной яме будет равно

Получилась столь огромная величина, что протон будет жить в яме вечно: время существования Вселенной «всего» .

Эти две задачи демонстрируют сильную зависимость проницаемости барьера от массы частицы.

Квантовое туннелирование элементарных частиц и сверхсветовые перемещения

Экспериментально подтверждается, что элементарная частица должна превысить скорость света, если квантовомеханическим образом «туннелирует» через стену.

Едва только были открыты радикальные уравнения квантовой механики, физики обнаружили один из страннейших феноменов, допускаемых этой теорией.

«Квантовое туннелирование» демонстрирует, сколь глубоко отличаются элементарные частицы, например, электроны, от макроскопических объектов. Например, бросьте мяч о стену – и он отскочит. Дайте ему скатиться на дно ложбинки, и он останется там. Но частица в первом случае может случайно проскочить сквозь стену. У частицы есть шанс «проскользнуть через гору и выкатиться из ложбинки», как написали в журнале Nature двое физиков в 1928 году, в одной из самых ранних характеристик квантового туннелирования.

Физики быстро обнаружили, что способность частиц туннелировать сквозь барьеры позволяет разрешить многие тайны. Эта способность объясняет и различные химические связи, и радиоактивный распад, и термоядерный синтез в недрах Солнца, где ядрам водорода удается преодолеть взаимное отталкивание и слиться – в результате чего возникает солнечный свет.

Но физиков одолело любопытство, сначала умеренное, а потом по-настоящему болезненное. Сколько же времени требуется частице, чтобы туннелировать сквозь барьер?

Проблема заключалась в том, что ответ получался бессмысленным.

Первые ориентировочные подсчеты времени туннелирования были опубликованы в 1932 году. Возможно, в частных разговорах такие оценки делались даже раньше, но «когда получаешь ответ, с виду не имеющий смысла, ты его не публикуешь», — отмечает Эфраим Стейнберг, физик из Университета Торонто.

Только в 1962 году инженер Томас Хартман из «Texas Instruments» написал статью, в которой открыто принимал шокирующие выводы, проистекавшие из математики.

Хартман обнаружил, что по принципу действия барьер напоминает короткое замыкание. Когда частица туннелирует, она тратит на перемещение меньше времени, чем если бы барьер отсутствовал. Еще поразительнее оказалось вот что: он рассчитал, что при утолщении барьера практически не увеличивается время, нужное частице, чтобы через него туннелировать. Таким образом, при наличии достаточно толстого барьера частица могла бы перескочить с одной его стороны на другую быстрее, чем свет преодолел бы то же расстояние в вакууме.

Короче говоря, квантовое туннелирование открывает возможность для сверхсветовых перемещений, которые, казалось бы, в физике не допускаются.

“Настоящие поводы для беспокойства появились только после открытия эффекта Хартмана,” – сказал Стейнберг.

Эта дискуссия закручивалась десятилетиями, отчасти потому, что вопрос о времени туннелирования затрагивает один из наиболее загадочных аспектов квантовой механики. «Отчасти он касается общей проблемы, которая позволила бы понять, что такое время, и как время измеряется в квантовой механике, и что это значит,” сказал Илай Поллак, физик-теоретик из Института Вейцмана в Израиле. Со временем физики вывели не менее 10 альтернативных математических выражений, описывающих туннелирование во времени, и каждое из них отражает свой взгляд на процесс туннелирования. Ни один из этих вариантов не позволил решить проблему.

Но сегодня вопрос о том, как соотносится туннелирование и время, вновь обретает актуальность, благодаря серии виртуозных экспериментов, позволивших точно измерить время туннелирования в лаборатории.

Эфраим Стейнберг, физик из университета Торонто. Занимается проблемой времени туннелирования уже не одно десятилетие.

Фото Мэтью Росса

Измерительный опыт, получивший наиболее высокую оценку на настоящий момент, был описан в одной из публикаций в июльском номере журнала Nature. Группа Стейнберга из университета Торонто воспользовалась методом под названием «часы Лармора», чтобы оценить, как атомы рубидия туннелируют через лазерное поле, в котором действуют силы отталкивания.

“Часы Лармора – наилучший и наиболее понятный способ измерить время туннелирования, и это был первый эксперимент, в рамках которого это время удалось очень хорошо измерить,” сказал Игорь Литвинюк, физик из университета Гриффита в Австралии, описавший иную попытку такого измерения времени туннелирования и также опубликовавший статью в журнале Nature.

Луис Манзони, физик-теоретик из Конкордия-Колледж, штат Миннесота, также находит убедительными измерения с применением часов Лармора. «Они в самом деле измеряют время туннелирования,” – говорит он.

Последние эксперименты вновь привлекают внимание к нерешенной проблеме. С момента публикации статьи Хартмана минуло шесть десятилетий, и независимо от того, как тщательно физики переопределяли время туннелирования или с какой точностью измеряли его в лаборатории, неизменно обнаруживалось, что при квантовом туннелировании проявляется эффект Хартмана. Представляется, что туннелирование является неисправимо, непоколебимо сверхсветовым процессом.

Литвинюк предлагает задуматься, “как это возможно, чтобы [туннелирующая частица] двигалась быстрее света?” и отмечает, что “это была чистая теория, пока не были выполнены измерения.”

Сколько времени?

Время туннелирования сложно зафиксировать, как и понять, что такое реальность.

В макроскопических масштабах время, затрачиваемое объектом для перехода из точки A в точку B, можно узнать, просто разделив расстояние на скорость объекта. Но в квантовой теории невозможно одновременно точно знать расстояние и скорость.

В квантовой теории у частицы есть целый спектр возможных местоположений и скоростей. Определенные варианты из всех этих возможностей в момент измерения словно кристаллизуются. Как именно это происходит – один из глубочайших вопросов.

Суть в том, что, пока частица не попадет в детектор, она одновременно находится везде и нигде. Поэтому весьма сложно сказать, сколько времени частица провела где-либо до попадания в детектор, например, внутри барьера. «Нельзя сказать, сколько времени она там проводит», — говорит Литвинюк, так как она может быть в двух местах одновременно.

Чтобы понять эту проблему в контексте туннелирования, начертим колоколообразную кривую, соответствующую всем возможным местоположениям частицы. Такая кривая, называемая «волновым пакетом», центрирована по позиции А. Теперь изобразим перемещение волнового пакета по направлению к барьеру, он при этом будет выглядеть как цунами (или как солитон? – прим. пер.). Уравнения квантовой механики описывают, как волновой пакет раздваивается при столкновении с препятствием. Большая часть пакета отражается и направляется обратно к А. Но меньший пик вероятности проскальзывает сквозь барьер и продолжает движение к B. Следовательно, существует шанс, что детектор зарегистрирует частицу в B.

Но, когда частица прибудет в B, что можно будет сказать о ее пути, или о том, как долго она находилась в барьере? Прежде, чем она внезапно появилась B, эта частица представляла собой двухчастную вероятностную волну, одна ее часть была отражена, а вторая просочилась. Волна одновременно преодолела барьер и не преодолела. В таком случае смысл «времени туннелирования» становится неясен.

Но, все-таки, невозможно отрицать, что любая частица, которая вышла из A и оказалась в B, обязательно проходит через барьер, и в какой-то момент взаимодействует с барьером. Вопрос – в какой именно момент?

Стейнберг, который был «подлинно одержим» вопросом о времени туннелирования еще с 1990-х, когда учился в аспирантуре, объясняет, что проблема связана с самой спецификой природы времени. У тел есть определенные характеристики, например, масса или местоположение. Но объекту не присуще некоторое значение «времени», которое можно было бы непосредственно измерить. «Я могу спросить вас: «Где находится мяч?», но не имеет смысла вопрос «В котором часу мяч?»», — говорит Стейнберг, — «время не является свойством, которым обладала бы какая-либо частица». Поэтому время приходится отсчитывать по другим событиям, происходящим в мире, например, по тиканью часов (а ход часов, в конечном итоге, сводится к перемещению стрелок в пространстве). Такие приращения называются «временем».

Но в случае с туннелированием никаких часов внутри частицы не установлено. Как же отслеживать изменения, происходящие с ней? Физики нашли множество «прокси» для туннелирования времени.

Туннелирование и время

Хартман (а до него Лерой Арчибальд Макколл в 1932 году) избрали простейший подход, позволяющий оценить, сколько времени уходит на туннелирование. Хартман рассчитал разницу между временем наиболее вероятного прибытия частицы из точки A в точку B в вакууме по сравнению с аналогичным временем, затрачиваемым, когда частица преодолевает барьер. Для этого он учел, как барьер сдвигает пиковую позицию на колоколообразной кривой передаваемого волнового пакета.

Но с этим подходом есть проблема, и она связана с тем престранным допущением, будто барьер ускоряет частицы. Мы попросту не можем сравнить исходный и конечный пик волнового пакета частицы. Отмеряя на часах разницу между наиболее вероятным временем отправления частицы (когда пик ее колоколообразной кривой находится в точке A) и ее наиболее вероятным временем прибытия (когда пик достигает точки B), мы не узнаем, сколько времени летела конкретная частица, поскольку частица, зафиксированная в B, не обязательно отправилась из A. На момент изначального вероятностного распределения она была везде и нигде, и могла быть, например, в переднем хвосте распределения, который расположен сравнительно близко к барьеру. В таком случае у нее будет шанс быстро достичь B.

Поскольку точные траектории частиц узнать невозможно, исследователи стали искать более вероятностный подход. Рассмотрели тот факт, что, если частица попадает в барьер, то в каждый момент времени существует некоторая вероятность, что частица находится внутри барьера (и вероятность, что она вне барьера). Затем физики суммируют вероятности для каждого мгновения и выводят среднее время туннелирования.

По поводу того, как измерять вероятности, в конце 1960-х были изобретены различные мысленные эксперименты, в которых «часы» можно прикреплять к самим частицам. Если часы каждой частицы «тикают», только пока она находится внутри барьера, и мы снимем показания с часов множества переданных частиц, то у нас получится разброс различных значений времени. Однако, среднее значение будет соответствовать времени туннелирования.

Разумеется, все это проще сказать, чем сделать. «Они просто генерировали безумные идеи о том, как измерить такое время, полагая при этом, что они никогда не воплотятся», — сказал Рамон Рамос, ведущий автор недавней статьи в Nature, — «но наука делает успехи, и мы счастливы, что сегодня такой эксперимент стал реальностью».

Встраиваемые часы

Хотя физики занимались оценкой времени туннелирования с 1980-х, сверхточные измерения стали быстро развиваться сравнительно недавно – в лаборатории Урсулы Келлер в Швейцарской высшей технической школе, Цюрих. Команда Урсулы Келлер смогла измерить время туннелирования при помощи так называемых атточасов. В атточасах Келлер электрон из атома гелия попадает в барьер, который вращается на месте, подобно стрелке часов. Электроны туннелируют чаще всего, когда барьер находится в определенной ориентации – допустим, по атточасам это полдень. Затем, когда электроны появляются из барьера, их отбрасывает в направлении, зависящем от положения барьера в тот момент. Чтобы оценить время туннелирования, команда Келлер измеряла угловую разницу между полуднем, на который приходилось большинство актов туннелирования, и углом, под которым улетали большинство исходящих электронов. Так удалось измерить разницу в 50 аттосекунд, то есть, миллиардных миллиардных долей секунды.

Затем, в работе, о которой было сообщено в 2019 году, группа Литвинюка смогла улучшить эксперимент Келлер с атточасами, взяв вместо гелия более простые атомы водорода. Они измерили даже более краткие промежутки времени, не более двух аттосекунд — это позволяет предположить, что туннелирование происходит почти мгновенно.

Но некоторые эксперты пришли к выводу, что атточасы – не слишком подходящий прибор для измерения времени туннелирования. Манзони, опубликовавший анализ таких измерений, указал, что этот подход ущербен в том же отношении, что и определение времени туннелирования по Хартману. Задним числом можно сказать, что у электронов, практически мгновенно туннелировавших сквозь барьер, была фора.

Тем временем Стейнберг, Рамос и их торонтские коллеги Дэвид Спирингс и Изабель Расико провели эксперимент, оказавшийся более убедительным.

Этот альтернативный подход опирается на факт, что многим частицам присуще магнитное свойство, которое называется «спин». Спин можно сравнить со стрелкой, которая может указывать только вверх или вниз. Но до измерения она может указывать куда угодно. Как открыл в 1897 году ирландский физик Джозеф Лармор, угол спина характеризуется вращением или «прецессией», когда частица находится в магнитном поле. Команда из Торонто смогла уподобить такую прецессию ходу часовых стрелок, и полученное устройство назвали «часами Лармора».

В качестве барьера исследователи воспользовались лазерным лучом и пропустили сквозь него магнитное поле. Затем подготовили атомы рубидия, чьи спины были ориентированы в определенном направлении, и дали этим атомам пройти сквозь барьер. Далее измерили спины атомов, вышедших с другой стороны. Если измерить спин отдельного атома, то всегда получаешь неинформативный результат «вверх» или «вниз». Но, если повторять измерение снова и снова, то совокупные измерения покажут, какую прецессию претерпели спины, пока атомы находились в барьере – следовательно, сколько времени они там провели.

Исследователи сообщили, что атом рубидия остается внутри барьера в среднем на протяжении 0,61 миллисекунд, что согласуется с теми показаниями часов Лармора, что были теоретически спрогнозированы в 1980-е. Чтобы проделать этот путь в вакууме, атомам потребовалось бы больше времени. Следовательно, эти расчеты показывают: если сделать достаточно толстый барьер, то такое ускорение позволит атомам туннелировать сквозь него быстрее скорости света.

Тайна, а не парадокс

В 1907 году Альберт Эйнштейн осознал, что только что сформулированная им теория относительности свидетельствует о невозможности сверхсветовой коммуникации. Представьте себе двоих персонажей, Алису и Боба, которые удаляются друг от друга с большой скоростью. Согласно теории относительности, их часы будут показывать разное время. Поэтому, в частности, если Алиса отправит Бобу сверхсветовой сигнал, а Боб сразу же отправит Алисе сверхсветовой отклик, то ответ Боба может достичь Алису ранее, чем она отправит исходное сообщение. «В таком случае следствие будет предшествовать причине», — писал Эйнштейн.

В целом эксперты сходятся во мнении, что туннелирование не нарушает причинно-следственной связи, но нет однозначного мнения, почему же не нарушает. «Думаю, у нас нет такого представления об этом, которое бы полностью всех устраивало», — говорит Стейнберг, — «это тайна, а не парадокс».

Некоторые убедительные догадки не подтверждаются. Манзони, в начале 2000-х заинтересовавшийся проблемой сверхсветового перемещения при туннелировании, попытался вместе с коллегой переделать вычисления. Они полагали, что увидят снижение скорости туннелирования до субсветовой, если учтут релятивистские эффекты (согласно которым время для быстродвижущихся частиц замедляется). «К нашему удивлению, сверхсветовое туннелирование также оказалось возможным», — сказал Манзони, — «фактически, в релятивистской квантовой механике эта проблема оказалась еще более острой».

Исследователи подчеркивают, что сверхсветовое туннелирование допустимо, коль скоро не допускает сверхсветовой передачи сигналов. По принципу оно похоже на «жуткое дальнодействие», изрядно беспокоившее Эйнштейна. Феномен «жуткого дальнодействия» связан с феноменом квантовой запутанности между сильно удаленными частицами, так, что акт измерения одной частицы мгновенно сказывается на состоянии обеих. Такая мгновенная связь между двумя частицами не вызывает парадоксов, поскольку с ее помощью частицы не могут обмениваться информацией друг с другом.

Правда, учитывая, сколько копий сломано по поводу жуткого дальнодействия, просто удивительно, насколько меньше беспокойства вызывает сверхсветовое туннелирование. «При туннелировании не приходится иметь дела с двумя отдельными системами, состояния которых связаны таким причудливым образом», — говорит Грейс Филд, работающая над проблемой времени туннелирования в Кембриджском университете, — «мы имеем дело всего с одной системой, которая перемещается в пространстве. В таком ключе туннелирование кажется явлением еще более странным, нежели запутанность».

В статье, опубликованной в New Journal of Physics, Поллак и двое его коллег высказываются, что сверхсветовое туннелирование не допускает сверхсветового обмена сигналами по статистическим причинам: пусть даже туннелирование сквозь исключительно толстый барьер происходит очень быстро, крайне низка вероятность, что туннелирование сквозь такой барьер вообще произойдет. Поэтому адресату всегда целесообразнее отправлять сигнал в вакууме.

Почему же не послать тучи частиц сквозь очень-очень толстый барьер, надеясь, что хотя бы одна преодолеет его со сверхсветовой скорости. Не будет ли достаточно всего одной частицы, чтобы передать ваше сообщение и сломать физику? Стейнберг, согласный со статистической трактовкой такой ситуации, настаивает, что единственной туннелировавшей частицы не хватит, чтобы передать информацию. У сигнала должна быть структура и детализация, а любой детализированный сигнал быстрее дойдет до адресата в эфире, нежели через ненадежный барьер.

Поллак считает, что эти вопросы требуют дальнейшего изучения. «Я думаю, что эксперименты Стейнберга подстегнут развитие теории. Куда она нас приведет – не знаю».

Размышления будут сопровождаться новыми экспериментами, у Стейнберга их целый список. Локализуя магнитное поле в разных областях барьера, Стейнберг и его коллеги рассчитывают проверить «не только длительность времени, которое проводит частица внутри барьера, но и где именно она проводит это время». Согласно теоретическим расчетам, большую часть времени атомы рубидия проводят на входе в барьер и на выходе из него, а в середине почти не задерживаются. Рамос отмечает, что «это удивительно и совершенно не поддается объяснению».

Зондируя множество частиц и усредняя, что именно с ними происходит, исследователи все детальнее изображают, что происходит «внутри горы», о чем пионеры квантовой механики даже не могли подумать более века назад. С точки зрения Стейнберга, эти разработки подсказывают: несмотря на все странности, характерные для квантовой механики, «если знать, где в итоге оказалась частица, можно подробнее определить, что с ней происходило до этого».


источники:

http://online.mephi.ru/courses/physics/atomic_physics/data/course/4/4.7.html

http://habr.com/ru/post/549122/