Уравнение шредингера электрона в потенциальном ящике

Уравнение Шредингера (общие свойства)

№1 Стационарное уравнение Шредингера имеет вид . Это уравнение записано для….

Стационарное уравнение Шредингера в общем случае имеет вид

, где потенциальная энергия микрочастицы. Для одномерного случая . Кроме того, внутри потенциального ящика , а вне ящика частица находиться не может, т.к. его стенки бесконечно высоки. Поэтому данное уравнение Шредингера записано для частицы в одномерном ящике с бесконечно высокими стенками.

Линейного гармонического осциллятора

ü Частицы в одномерном потенциальном ящике с бесконечно высокими стенками

Частицы в трехмерном потенциальном ящике с бесконечно высокими стенками

Электрона в атоме водорода

Установите соответствия между квантовомеханическими задачами и уравнениями Шредингера для них.

Общий вид стационарного уравнения Шредингера имеет вид:

потенциальная энергия частицы,

оператор Лапласа. Для одновременного случая

.Выражение для потенциальной энергии гармонического осциллятора ,т.е частицы совершающей одномерное движение под действием квазиупругой силы имеет вид U= .

Значение потенциальной энергии электрона в потенциальном ящике с бесконечно высокими стенками U=0.Электрон в водородоподобном атоме обладаем потенциальной энергией Для атома водородаZ=1 .

Таким образом, для электрона в одномерном потенциальном ящике ур-ие Шредингера имеет вид:

С помощью волновой функции ,являющейся решением уравнения Шредингера ,можно определить….

Варианты ответа: (Укажите не менее двух вариантов ответа)

Средние значения физических величин ,характеризующих частицу

Вероятность того,что частица находится в определенной области пространства

Величина имеет смысл плотности вероятности(вероятности,отнесенной к единице объема),т.е определяет вероятность пребывания частицы в соответствующем месте пространства.Тогда вероятность W обнаружения частицы в определенной области пространства равна

Уравнение Шредингера (конкретные ситуации)

№1Собственные функции электрона в одномерном потенциальном ящике с бесконечно высокими стенками имеют вид где ширина ящика, квантовое число, имеющее смысл номера энергетического уровня. Если число узлов функции на отрезке и , то равно…

Число узлов , т.е. число точек, в которых волновая функция на отрезке обращается в нуль, связано с номером энергетического уровня соотношением . Тогда , и по условию это отношение равно 1,5. Решая полученное уравнение относительно , получаем, что

Ядерные реакции.

№1В ядерной реакции буквой обозначена частица …

Из законов сохранения массового числа и зарядового числа следует, что заряд частицы равен нулю, а массовое число равно 1. Следовательно, буквой обозначен нейтрон.

На графике в полулогарифмическом масштабе показана зависимость изменения числа радиоактивных ядер изотопа от времени.Постоянная радиоактивного распада в равна …(ответ округлите до целых)

Число радиоактивных ядер изменяется со временем по закону -начальное число ядер, -постоянная радиоактивного распада.Прологарифмировав это выражение,получим

ln .Следовательно, =0,07

Законы сохранения в ядерных реакциях.

Реакция не может идти из-за нарушения закона сохранения …

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии, импульса, момента импульса (спина) и всех зарядов (электрического , барионного и лептонного ). Эти законы сохранения не только ограничивают последствия различных взаимодействий, но определяют также все возможности этих последствий. Для выбора правильного ответа надо проверить, каким законом сохранения запрещена и какими разрешена приведенная реакция взаимопревращения элементарных частиц. Согласно закону сохранения лептонного заряда в замкнутой системе при любых процессах, разность между числом лептонов и антилептонов сохраняется. Условились считать для лептонов: . лептонный заряд а для антилептонов: . лептонный заряд . Для всех остальных элементарных частиц лептонные заряды принимаются равными нулю. Реакция не может идти из-за нарушения закона сохранения лептонного заряда , т.к.

ü Лептонного заряда

Спинового момента импульса

Реакция не может идти из-за нарушения закона сохранения…

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии,импульса,момента импульса(спина)и всех зарядов(электрического Q,барионного B и лептонного L).Эти законы сохранения не только ограничивают последствия различных взаимодействий,но определяют также все возможности этих последствий. Согласно закону сохранения барионного заряда B,для всех процессов с участием барионов и антибарионов суммарный барионный зарад сохраняется. Барионам (нуклонам n,p и гиперонам)приписывается барионный заряд

B=-1,а всем остальным частицам барионный заряд-B=0.Реакция не может идти из-за нарушения закона барионного заряда B,т.к (+1)+(+1)

Варианты ответа: ,лептонного заряда,спинового момента импульса,электрического заряда.

Законом сохранения электрического заряда запрещены реакции…

Варианты ответа(не менее 2):

При взаимодействии элементарных частиц и их превращении в другие возможны только такие процессы,в которых выполняются законы сохранения,в частности закон сохранения электрического заряда:суммарный электрический заряд частиц,вступающих в реакцию,равен суммарному электрическому заряду частиц,полученных в результате реакции.Электрический заряд Q в единицах элементарного заряда равен:у нейтрона (n) Q=0,протона (P) Q=+1, электрона ( )Q=-1,позитрона ( ) Q=+1,электронного нейтрино и антинейтрино ( Q=0, антипротона ( Q=-1, мюонного нейтрино ( )Q=0, мюона ( ) Q=-1.Закон сохранения электрического заряда не выполняется в реакциях:

№1Известно четыре вида фундаментальных взаимодействий. В одном из них участниками являются все заряженные частицы, обладающие магнитным моментом, переносчиками –фотона. Этот вид взаимодействия характеризуется сравнительной интенсивностью , радиус его действия равен …

Все перечисленные характеристики соответствуют электромагнитному взаимодействию. Его радиус действия равен бесконечности.

ü

Волны де Бройля. Волновая функция и ее физический смысл. Уравнение Шредингера. Электрон в потенциальном ящике.

В 1923 году произошло примечательное событие, которое в значительной степени ускорило развитие квантовой физики. Французский физик Л. де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.

Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота ν и длина волны λ.

Корпускулярные и волновые характеристики микрообъектов связаны такими же количественными соотношениями, как и у фотона:

Гипотеза де Бройля постулировала эти соотношения для всех микрочастиц, в том числе и для таких, которые обладают массой m. Любой частице, обладающей импульсом, сопоставлялся волновой процесс с длиной волны λ = h / p. Для частиц, имеющих массу,

В нерелятивистском приближении (υ

В следующем 1928 году английский физик Г. Томсон (сын Дж. Томсона, открывшего за 30 лет до этого электрон) получил новое подтверждение гипотезы де Бройля. В своих экспериментах Г. Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота.

Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что это универсальное явление природы, общее свойство материи. Следовательно, волновые свойства должны быть присущи и макроскопическим телам. Однако вследствие большой массы макроскопических тел их волновые свойства не могут быть обнаружены экспериментально. Например, пылинке массой 10 –9 г, движущийся со скоростью 0,5 м/с соответствует волна де Бройля с длиной волны порядка 10 –21 м, т. е. приблизительно на 11 порядков меньше размеров атомов. Такая длина волны лежит за пределами доступной наблюдению области. Этот пример показывает, что макроскопические тела могут проявлять только корпускулярные свойства.

Таким образом, подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме коренным образом изменила представления о свойствах микрообъектов.

Всем микрообъектам присущи и волновые, и корпускулярные свойства, однако, они не являются ни волной, ни частицей в классическом понимании. Разные свойства микрообъектов не проявляются одновременно; они дополняют друг друга, и только их совокупность характеризует микрообъект полностью. В этом заключается сформулированный знаменитым датским физиком Н. Бором принцип дополнительности. Можно условно сказать, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.

С точки зрения волновой теории, максимумы в картине дифракции электронов соответствуют наибольшей интенсивности волн де Бройля. В области максимумов, зарегистрированных на фотопластинке, попадает большее число электронов. Но процесс попадания электронов в различные места на фотопластинке не индивидуален. Принципиально невозможно предсказать, куда попадет очередной электрон после рассеяния, существует лишь определенная вероятность попадания электрона в то или иное место. Таким образом, описание состояния микрообъекта и его поведения может быть дано только на основе понятия вероятности.

Необходимость вероятностного подхода к описанию микрообъектов является важнейшей особенностью квантовой теории. В квантовой механике для характеристики состояний объектов в микромире вводится понятие волновой функции Ψ (пси-функции). Квадрат модуля волновой функции |Ψ| 2 пропорционален вероятности нахождения микрочастицы в единичном объеме пространства. Конкретный вид волновой функции определяется внешними условиями, в которых находится микрочастица. Математический аппарат квантовой механики позволяет находить волновую функцию частицы, находящейся в заданных силовых полях. Безграничная монохроматическая волна де Бройля есть волновая функция свободной частицы, на которую не действуют никакие силовые поля.

Наиболее отчетливо дифракционные явления проявляются в тех случаях, когда размеры препятствия, на котором происходит дифракция волн, соизмеримы с длиной волны. Это относится к волнам любой физической природы и, в частности, к электронным волнам. Для волн де Бройля естественной дифракционной решеткой является упорядоченная структура кристалла с пространственным периодом порядка размеров атома (приблизительно 0,1 нм). Препятствие таких размеров (например, отверстие в непрозрачном экране) невозможно создать искусственно, но для уяснения природы волн де Бройля можно ставить мысленные эксперименты.

Уравнение Шредингера. Электрон в потенциальном ящике.Потенциальным “ящиком” называют потенциальную яму с вертикальными стенками (рис. 7). Область пространства с координатами от x1до x2на рис. 7 и есть потенциальный “ящик”. В реальной действительности такая ситуация наблюдается, например, для электронов в металле: внутри металла они свободны, но чтобы покинуть металл, электроны должны совершить работу выхода Авых, равную

Рассмотрим простейший пример решения уравнения Шрёдингера для частицы, находящейся в потенциальном ящике с бесконечно высокими стенками (т.е. на границах ящика Ep ® ¥ , рис.8). Это, безусловно, идеализация. В действительности стенки ящика будут всегда конечной высоты. Однако на данной модели наиболее просто показать, что дает решение уравнения Шрёдингера. Итак, рассмотрим одномерный потенциальный ящик с бесконечно высокими стенками (рис.8). Ширина ящика l. Внутри ящика Еp = 0,т.е.частица свободна. Уравнение Шрёдингера для этого случая примет вид:

Граничные условия: 1) при x = 0 y (0) = 0, 2) при x = l y (l) = 0.(25) (26)

Смысл этих условий прост: частица не может находиться на стенках ящика, так как значение Еp = ¥ не имеет физического смысла.

(27)

Смысл его: частица достоверно находится внутри ящика, т.е. в области координат 0

Уравнение Шредингера. Электрон в потенциальной яме

Основной характеристикой состояния атомов, молекул, элементарных частиц является y-функция. Аналитическое выражение y-функции в каждом конкретном случае можно получить путем решения волнового уравнения – основного урав­нения квантовой механики, предложенного Э. Шредингерам в 1920 г.

Применительно к стационарным состояниям уравнение Шредингера имеет вид:

. (4.1)

где т – масса частицы; Е и U – ее полная и потенциальная энергии.

Если частица перемещается только вдоль некоторой линии, например, вдоль оси ОХ (одномерный случай), то уравнение Шрёдингера упрощается и принимает вид:

(4.2)

Одним из наиболее простых примеров использования уравнения Шрёдингера является решение задачи о движении частицы в одномерной потенциальной яме.

Пусть электрон перемещается вдоль оси ОХ только в пределах 0

Физический смысл здесь имеет только одно значение:

, или , откуда

, (4.7)

где п – целое число, оно принимает значения 1, 2, 3, . ; п ≠ 0, так как в противном случае y= 0 при любом х, что означает отсутствие электрона в потенциальной яме. Число n называют квантовым числом. Из (4.4) находим энергию , что с учетом (4.7) дает:

. (4.8)

Индекс n при Е показывает, что различным значениям квантового числа n соответствует и разная энергия.

Подставляя w (4.7) в (4.5) и учитывая , получаем

. (4.9)

Из (4.8) следует, что решение уравнения Шредингера для электрона в потенциальной яме без каких-либо дополнительных постулатов приводит к дискретным, квантованным значениям энергии: ; и т.д.

Возведя (4.9) в квадрат, получим плотность вероятности нахождения электрона в разных точках потенциальной ямы. На рис.4.2. показана графическая зависимость от х при разных дискретных состояниях, то есть разных квантовых числах. Как видно из рисунка, электрон может с разной с разной вероятностью находиться в разных местах потенциальной ямы. Есть такие точки, в которых вероятность нахождения электрона вообще равна нулю. Это существенно отличается от представлений классической физики, согласно которым равновероятно нахождение частицы в раз­ных местах потенциальной ямы


источники:

http://megalektsii.ru/s67505t3.html

http://mydocx.ru/1-58294.html