Уравнение шредингера это простыми словами

Уравнение Шрёдингера

Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Кот Шредингера: суть эксперимента простыми словами

Приветствую Вас, друзья!

Каждый человек, пользующийся интернетом, встречал загадочное словосочетание «кот Шрёдингера». Данный термин является названием известного мысленного эксперимента, предложенного австрийским физиком Эрвином Шрёдингером. Этот ученый известен тем, что является одним из создателей такого важного раздела физики как квантовая механика. Давайте поговорим о том, что такое кот Шредингера простыми словами, и узнаем, в чем суть эксперимента.

В чём суть эксперимента?

Представьте себе металлический ящик с толстыми звуконепроницаемыми стенками. Внутри находится кот. Пока ящик закрыт, внешний наблюдатель не может знать, что происходит с котом. В этом же ящике находится хитроумный механизм, который автор назвал «адская машинка». Он содержит капсулу со смертельным ядом и одно ядро вымышленного радиоактивного элемента, период полураспада которого составляет 1 час.

Теперь закроем ящик ровно на 1 час. Если за время эксперимента атом распадется, то механизм сработает, и кот погибнет. При этом вероятность такого исхода составляет ровно 50%. Узнать результат эксперимента можно, только открыв контейнер. Но в каком состоянии находится кот перед самым открытием? Согласно формальной логике, состояние кота полностью соответствует состоянию ядра. Ядро целое – кот Шрёдингера жив, ядро распалось – кот погиб. И вот здесь начинается самое интересное.

Квантовая механика утверждает, что нестабильное ядро пребывает в суперпозиции – одновременно является и целым, и распавшимся. Но тогда получается, что кот тоже одновременно и жив, и мёртв. И из состояния неопределенности его выводит ученый, открывающий ящик через час после начала эксперимента.

Существует распространенное заблуждение, что Эрвин Шрёдингер придумал данный эксперимент, чтобы объяснить простыми словами основы квантовой механики. Но ученый был известным критиком общепринятой интерпретации КМ и своим экспериментом пытался показать её очевидные недостатки.

Для Шрёдингера было важно показать, что один из ключевых принципов общепринятой интерпретации квантовой механики теряет смысл при взаимодействии квантового мира с макрообъектами. Именно поэтому в эксперименте фигурирует нестабильное атомное ядро. Ученый показательно связал состояния субатомного объекта, пребывающего в состоянии квантовой неопределенности, и объекта макромира, хорошо знакомого и привычного каждому из нас.

Объяснение эксперимента Шрёдингера

Нестабильное атомное ядро можно рассматривать как объект квантового мира, поскольку оно может пребывать в одном из двух определенных состояний: распавшееся или не распавшееся. При этом до факта наблюдения оно пребывает одновременно в обоих состояниях (такое смешанное состояние называется «суперпозицией»).

Смысл эксперимента Шрёдингера простыми словами можно объяснить так:

  1. Состояние кота непосредственно связано с состоянием атомного ядра (жизнь прекращается в момент распада);
  2. Если мы говорим, что ядро одновременно существует в двух противоположных состояниях, то же самое можно сказать и про кота (и жив, и мёртв одновременно);
  3. Однозначно судить о состоянии кота (и атома) можно только после открытия ящика (то есть, когда произойдёт взаимодействие наблюдателя с системой, которая до этого была изолирована);
  4. С точки зрения здравого смысла нельзя сказать, что кот Шрёдингера и жив, и мёртв одновременно, а его состояние определяется в тот момент, когда исследователь открывает контейнер;
  5. Но квантовая механика говорит именно об этом.

Таким образом, цель эксперимента Шрёдингера заключалась в том, чтобы продемонстрировать противоречие одного из ключевых принципов квантовой механики логике и здравому смыслу. Автор настаивал, что общепринятая копенгагенская интерпретация КМ неполна, поскольку в ней не описаны чёткие критерии, при которых происходит так называемый коллапс волновой функции (тот самый момент, когда суперпозиция сменяется одним из возможных состояний).

Что хотел показать Шрёдингер

Эрвин Шрёдингер посвятил значительную часть жизни теоретическим исследованиям в области квантовой механики, поэтому точно не был её противником или критиком. Ученого не устраивала копенгагенская интерпретация, которую его коллеги приняли как наиболее обоснованную. Доводя один из ключевых тезисов квантовой механики до абсурда, он не пытался его опровергнуть, а лишь обращал внимание на неполноту общепринятой интерпретации.

Он считал, что для полноты необходимо точное определение условий, при которых происходит коллапс волновой функции (то есть, система переходит из суперпозиции в одно определенное квантовое состояние). Из принятых тогда формулировок можно было заключить, что человек способен влиять на состояние материи буквально одним взглядом. И якобы именно в момент наблюдения система переходит из суперпозиции в одно конкретное состояние.

Говоря простыми словами, если рассматривать эксперимент Шрёдингера в рамках копенгагенской интерпретации, то кот становится живым или мёртвым лишь тогда, когда учёный открывает ящик, а вовсе не в момент срабатывания «адской машинки». Ученый не оспаривал существование суперпозиции и принципа неопределенности в квантовом мире. Он оспаривал так называемый «парадокс наблюдателя», согласно которому именно наблюдатель в момент наблюдения выводит систему из состояния суперпозиции.

Заключение

Существует известная шутка Альберта Эйнштейна о парадоксе наблюдателя: «Неужели вы думаете, что Луна существует только тогда, когда вы на неё смотрите?». При этом он не был противником квантовой механики, а лишь указывал коллегам на серьезную брешь в этой фундаментальной области знаний.

Шрёдингер поставил перед собой такую же задачу. Он решил доказать всем, что не наблюдатель определяет состояние системы, и судьба кота определяется отнюдь не в тот момент, когда открывается коробка.

Напоследок остаётся лишь добавить, что рассмотренный сегодня эксперимент является мысленным. А значит, ни один кот во время его проведения не пострадал.

Теория Шредингера простыми словами. Кот Шредингера. Эрвин Шредингер

Характерной чертой работы выдающегося ученого Эрвина Шредингера была своего рода «вторичность». Сам он редко занимался определенной научной проблемой. Его излюбленным жанром работы был отклик на чье-либо научное изыскание, развитие этой работы или ее критика. Несмотря на то, что сам Шредингер был индивидуалистом по характеру, ему всегда была необходима чужая мысль, опора для дальнейшей работы. Несмотря на этот своеобразный подход, Шредингеру удалось сделать немало открытий.

Биографические данные

Теория Шредингера сейчас известна не только студентам физико-математических факультетов. Она будет интересна всякому, кто испытывает интерес к популярной науке. Эта теория была создана известным физиком Э. Шредингером, который вошел в историю как один из создателей квантовой механики. Ученый родился 12 августа 1887 года в семье владельца фабрики по изготовлению клеенки. Будущий ученый, прославившийся на весь мир своей загадкой, увлекался в детстве ботаникой и рисованием. Первым его наставником был отец. В 1906 году Шредингер начал учебу в Венском университете, во время которой и начал восхищаться физикой. Когда настала Первая мировая война, ученый пошел на службу артиллеристом. В свободное время занимался изучением теорий Альберта Эйнштейна.

К началу 1927 года в науке сложилась драматическая ситуация. Э. Шредингер считал, что основанием теории о квантовых процессах должна служить идея о непрерывности волн. Гейзенберг, напротив, считал, что фундаментом для этой области знаний должна быть концепция о дискретности волн, а также идея о квантовых скачках. Нильс Бор не принимал ни одной из позиций.

Достижения в науке

За создание концепции волновой механики в 1933 году Шредингер получил Нобелевскую премию. Однако, воспитанный в традициях классической физики, ученый не мог мыслить иными категориями и не считал квантовую механику полноценной отраслью знания. Его не могло удовлетворить двойственное поведение частиц, и он пытался свести его исключительно к волновому. В своей дискуссии с Н. Бором Шредингер выразился так: «Если мы планируем сохранить в науке эти квантовые скачки, тогда я вообще жалею, что связал свою жизнь с атомной физикой».

Дальнейшие работы исследователя

При этом Шредингер был не только одним из создателей современной квантовой механики. Именно он был тем ученым, который ввел в научный обиход термин «объектность описания». Это возможность научных теорий описывать реальность без участия наблюдателя. Его дальнейшие исследования были посвящены теории относительности, термодинамическим процессам, нелинейной электродинамике Борна. Также ученым было сделано несколько попыток создать единую теорию поля. Кроме того, Э. Шредингер владел шестью языками.

Самая знаменитая загадка

Теория Шредингера, в которой фигурирует тот самый кот, выросла из критики ученого квантовой теории. Один из ее основных постулатов гласит, что пока за системой не производится наблюдение, она находится в состоянии суперпозиции. А именно, в двух и более состояниях, которые исключают существование друг друга. Состояние суперпозиции в науке имеет следующее определение: это способность кванта, которым может быть также электрон, фотон, или, например, ядро атома, находиться одновременно в двух состояниях или даже в двух точках пространства в тот момент, когда никто за ним не наблюдает.

Объекты в разных мирах

Простому человеку очень сложно понять такое определение. Ведь каждый объект материального мира может быть либо в одной точке пространства, либо в другой. Проиллюстрировать этот феномен можно следующим образом. Наблюдатель берет две коробки, и кладет в одну из них шарик для тенниса. Будет ясно, что в одной коробке он находится, а в другой – нет. Но если в одну из емкостей положить электрон, то верным будет следующее утверждение: эта частица находится одновременно в двух коробках, каким бы парадоксальным это ни казалось. Точно так же электрон в атоме не находится в строго определенной точке в тот или иной момент времени. Он вращается вокруг ядра, располагаясь на всех точках орбиты одновременно. В науке этот феномен называется «электронным облаком».

Что хотел доказать ученый?

Таким образом, поведение маленьких и больших объектов реализуется по совершенно разным правилам. В квантовом мире существуют одни законы, а в макромире – абсолютно другие. Однако нет такой концепции, которая объясняла бы переход от мира материальных предметов, привычных для людей, к микромиру. Теория Шредингера и была создана, для того чтобы продемонстрировать недостаточность исследований в области физики. Ученый хотел показать, что есть наука, целью которой является описание небольших объектов, и есть область знаний, изучающая обычные предметы. Во многом благодаря работам ученого и произошло разделение физики на две области: квантовую и классическую.

Теория Шредингера: описание

Свой знаменитый мысленный эксперимент ученый описал в 1935 году. В его проведении Шредингер опирался на принцип суперпозиции. Шредингер подчеркивал, что пока мы не наблюдаем за фотоном, он может быть как частицей, так и волной; как красным, так и зеленым; как круглым, так и квадратным. Этот принцип неопределенности, который непосредственно вытекает из концепции квантового дуализма, Шредингер и использовал в своей известной загадке про кота. Смысл эксперимента вкратце состоит в следующем:

  • В закрытую коробку помещается кот, а также емкость, в которой содержится синильная кислота и радиоактивное вещество.
  • Ядро в течение часа может распадаться. Вероятность этого составляет 50%.
  • Если атомное ядро распадется, то это будет зафиксировано счетчиком Гейгера. Механизм сработает, и ящик с отравой будет разбита. Кот умрет.
  • Если же распада не произойдет, то кот Шредингера будет жив.

Согласно этой теории, пока не осуществляется наблюдение за котом, он находится одновременно в двух состояниях (мертв и жив), точно так же, как и ядро атома (распавшееся или не распавшееся). Конечно, это возможно только лишь по законам квантового мира. В макромире кот не может быть и живым, и мертвым одновременно.

Парадокс наблюдателя

Чтобы понять суть теории Шредингера, необходимо также иметь представление о парадоксе наблюдателя. Его смысл состоит в том, что объекты микромира могут находиться одновременно в двух состояниях только тогда, когда за ними не производится наблюдение. К примеру, в науке известен так называемый «Эксперимент с 2-мя щелями и наблюдателем». На непрозрачную пластинку, в которой были сделаны две вертикальные щели, ученые направляли пучок электронов. На экране, находившемся за пластиной, электроны рисовали волновую картину. Иными словами, они оставляли черные и белые полосы. Когда же исследователи захотели понаблюдать, каким образом электроны пролетают через щели, то частицы отобразили на экране всего лишь две вертикальные полосы. Они вели себя как частицы, а не как волны.

Копенгагенское объяснение

Современное объяснение теории Шредингера носит название копенгагенского. Исходя из парадокса наблюдателя, оно звучит следующим образом: до тех пор, пока никто не наблюдает за ядром атома в системе, оно находится одновременно в двух состояниях – распавшемся и нераспавшемся. Однако утверждение о том, что кот жив и мертв одновременно, крайне ошибочно. Ведь в макромире никогда не наблюдаются те же явления, что и в микромире.

Поэтому речь идет не о системе «кот-ядро», а о том, что между собой связаны счетчик Гейгера и ядро атома. Ядро может выбрать то или иное состояние в момент, когда производятся измерения. Однако данный выбор имеет место не в тот момент, когда экспериментатор открывает ящик с котом Шредингера. На самом деле, открытие ящика имеет место в макромире. Иными словами, в системе, которая очень далека от атомного мира. Поэтому ядро выбирает свое состояние именно в тот момент, когда оно попадает на детектор счетчика Гейгера. Таким образом, Эрвин Шредингер в своем мысленном эксперименте описал систему недостаточно полно.

Общие выводы

Таким образом, не совсем корректно связывать макросистему с микроскопическим миром. В макромире квантовые законы теряют свою силу. Ядро атома может находиться одновременно в двух состояниях только лишь в микромире. То же самое не может быть сказано относительно кота, поскольку он является объектом макромира. Поэтому только на первый взгляд создается впечатление, что кот переходит из суперпозиции в одно из состояний в момент открытия ящика. В действительности его судьба определяется в тот момент, когда атомное ядро взаимодействует с детектором. Вывод можно сделать такой: состояние системы в загадке Эрвина Шредингера никак не связано с человеком. Оно зависит не от экспериментатора, а от детектора – предмета, который «ведет наблюдение» за ядром.

Продолжение концепции

Теория Шредингера простыми словами описывается так: пока наблюдатель не смотрит на систему, она может находиться одновременно в двух состояниях. Однако еще один ученый – Юджин Вигнер, пошел дальше и решил довести концепцию Шредингера до полного абсурда. «Позвольте! — сказал Вигнер, — А что если рядом с экспериментатором, наблюдающим за котом, стоит его коллега?» Напарник не знает о том, что именно увидел сам экспериментатор в тот момент, когда открыл коробку с котом. Кот Шредингера выходит из состояния суперпозиции. Однако никак не для коллеги наблюдателя. Только в тот момент, когда последнему станет известна судьба кота, животное можно окончательно назвать живым или мертвым. Кроме того, на планете Земля живут миллиарды людей. И самый последний вердикт можно будет вынести только тогда, когда результат эксперимента станет достоянием всех живых существ. Конечно, всем людям можно рассказать судьбу кота и теорию Шредингера кратко, однако это очень долгий и трудоемкий процесс.

Принципы квантового дуализма в физике так и не были опровергнуты мысленным экспериментом Шредингера. В каком-то смысле каждое существо можно назвать ни живым и ни мертвым (находящимся в суперпозиции) до тех пор, пока есть хотя бы один человек, за ним не наблюдающий.


источники:

http://dnevnik-znaniy.ru/znaj-i-umej/kot-shredingera-sut-eksperimenta-prostymi-slovami.html

http://www.syl.ru/article/339580/teoriya-shredingera-prostyimi-slovami-kot-shredingera-ervin-shredinger