Уравнение шредингера волновая функция ее физический смысл

Уравнение шредингера волновая функция ее физический смысл

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон-элементарная частица света, обладающая волновыми свойствами.

Логично считать, что и другие частицы-электроны, нейтроны- обладают волновыми свойствами.

Формула для импульса фотона

была использована для других микрочастиц массой m, движущихся со скоростью v:

По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.

К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.

Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не «размазывается» по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

4.4.2. Волновая функция и ее физический смысл

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .

Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:

В дальнейшем будем рассматривать только стационарные состояния; ψ-функция является вероятностной характеристикой состояния частицы. Поясним смысл этого утверждения.

Выделим в пространстве достаточно малый объем dV=dxdydz, в пределах которого значения ψ-функции можно считать одинаковыми. Вероятность нахождения dW в частицы в этом объеме пропорциональна объему и зависит от квадрата модуля ψ -функции:

Отсюда следует физический смысл волновой функции:

Квадрат модуля волновой функции равен плотности вероятности, то есть отношению вероятности нахождения частицы в объеме к этому объему .

Интегрируя выражение (4.4.5) по некоторому объему V, находим вероятность нахождения частицы в этом объеме:

4.4.3. Соотношение неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .

В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.

В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью

Таким образом, чем точнее определена координата x (Δx→0), тем не менее точно определена проекция р x (Δp x→ ± ), и наоборот. Аналогично,

Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .

Поясним их одним модельным экспериментом.

При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему «размазыванию» пучка электронов, то есть к большей неопределенности импульса и скорости частиц.

Рис. 4.4.1.Пояснение к соотношению неопределенности.

Соотношение неопределенностей можно представить в виде

где ΔE — неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.

Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.

«Размытость» уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:

Это проявляется в уширении спектральных линий.

4.4.4.Уравнение Шредингера

Так как состояние микрочастицы описывают ψ -функцией, то надо указать способ нахождения этой функции с учетом внешних условий. Это возможно в результате решения основного уравнения квантовой механики, предложенного Шредингером. Такое уравнение в квантовой механике постулируется так же, как в классической механике постулируется закон Ньютона.

Применительно к стационарным состояниям уравнение Шредингера может быть записано так:

где m- масса частицы; ; Е и Е n –ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)

Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа

Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов – e (электрон) и Ze (ядро), — находящихся на расстоянии r в вакууме, выражается следующим образом:

Состояние электрона в атоме характеризуется не одним, а несколькими квантовыми числами.

Первое из них — главное квантовое число n =1, 2, 3, . Оно определяет уровни энергии электрона по закону

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)

На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.

Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.

Второе квантовое число – орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:

Третье квантовое число – магнитное m l , которое при данном l принимает значения 0, ±1, ± 2, …, ±l; всего 2l+1 значений. Это число определяет проекции орбитального момента импульса электрона на некоторое произвольно выбранное направление Z:

Четвертое квантовое число – спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:

Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква – орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.

© ФГОУ ВПО Красноярский государственный аграрный университет, 2015

Уравнение шредингера волновая функция ее физический смысл

Задачи атомной физики решаются методами квантовой теории, которая принципиально отличается от классической механики.

Решение задачи о движении тела макроскопических размеров основано на применении второго закона Ньютона. Если известны силы, действующие на тело, то сначала мы находим его ускорение, затем — траекторию, после чего — все параметры движения. Но в масштабах атомов понятие траектории теряет свой смысл. Своё значение сохраняют так называемые интегралы движения. К ним относятся, в первую очередь, энергия, импульс, момент вращения и чётность. В квантовой теории эти величины определяются сразу, минуя этап вычисления траектории.

В основе расчётов лежит уравнение Шредингера. Решив его, мы находим набор энергетических уровней, который реализуется в заданном потенциале, а также получаем информацию статистического характера о возможном положении частицы.

8.1. Уравнение Шредингера

Уравнение Шредингера, как законы Ньютона и уравнения Максвелла, вывести нельзя. Оно основано на анализе экспериментальных данных и в масштабах атомов описывает волновые свойства частиц. Покажем связь уравнения Шредингера с волновым пакетом. Для этого запишем уравнение волнового пакета:

где B — амплитуда. Будем считать, что величина B как функция k равна нулю при k Δ k и k > Δ k . Тогда областью интегрирования становится вся числовая ось. Вспоминая соотношения де Бройля-Эйнштейна (формулы (2.1) и (2.1а) первой главы), приходим к новой записи выражения для волнового пакета

Продифференцируем (1.1) по времени:

Появлению энергии в подынтегральной функции соответствует оператор дифференцирования

Его называют оператором энергии . Импульс, в свою очередь, связан с оператором

в чём можно убедиться, дифференцируя (1.1) по x :

Мы рассматриваем нерелятивистскую частицу в отсутствие внешних полей, следовательно, ее энергия равна p2/2 m. Ей можно сопоставить оператор двойного дифференцирования по координате:

Вычитая (1.3) из (1.2), получим

Всё подынтегральное выражение вместе с разностью равно нулю. Следовательно,

Мы вывели одномерное уравнение Шредингера для свободной частицы. Теперь учтём возможное присутствие внешних полей:

Здесь U = U( x , t ) — потенциальная энергия, зависящая только одной координаты. Вообще говоря, она может также меняться со временем. Соответственно, приходим к одномерному уравнению Шредингера:

Обобщение на случай трёх измерений сводится к замене производной по x оператором Лапласа:

Уравнение Шредингера с потенциалом, зависящим от всех трёх координат, имеет вид

Вектору импульса в трёхмерном случае соответствует оператор градиента:

где e x , e y и e z — единичные векторы в направлении координатных осей. В процессе вывода мы использовали следующие соотношения между физическими величинами и операторами:

Оператор принято отмечать «шляпкой». Например, оператор, отвечающий физической величине G, обозначается как Ĝ. В квантовой механике вводится оператор энергии, или оператор Гамильтона

Он позволяет записать уравнение Шредингера следующим образом:

Уравнение Шредингера содержит мнимую единицу i , следовательно, его решение должно быть комплексным. Этим оно отличается от волнового уравнения в классической механике . В качестве примера рассмотрим одномерный случай. Классическое уравнение

позволяет работать отдельно с действительной и мнимой частями Y , каждая из которых подчиняется одному и тому же уравнению. В самом деле, если

где u и V — действительные функции, то уравнению (1.9), которое мы теперь запишем в виде

равносильна система одинаковых уравнений, каждое из которых совпадает с исходным :

Действительная и мнимая части Y разделились. Мы убедились, что в классическом случае нет принципиальной необходимости в комплексном представлении (хотя оно часто используется для удобства вычислений). Для уравнения Шредингера это не так. Разложение (1.10) вставим теперь в уравнение (1.4):

Этому уравнению эквивалентна система

в которой переменные u и V связаны друг с другом.

Структура уравнения Шредингера

показывает, что оно отображает закон сохранения энергии.

Уравнение Шредингера определяет зависимость волновой функции от времени и от координат. Как второй закон Ньютона описывает траекторию частицы, так уравнение Шредингера описывает эволюцию волновой функции.

Выход в комплексную плоскость является следствием требования, чтобы волновая функция в любой момент времени полностью определялась её начальным значением. Следовательно, уравнение Шредингера должно содержать только первую производную волновой функции по времени, но не вторую. Если ограничиться гармоническими функциями в действительной области, то волновое уравнение обязано содержать вторую производную. В самом деле, однократное дифференцирование переводит синус в косинус и наоборот. Но колебания могут быть описаны экспонентой с комплексным показателем. Её важное свойство заключается в том, что первая производная функции возвращает нас к ней самой:

Перейдём к обсуждению физического смысла волновой функции.

2.1. Волновая функция

Выкладки предыдущего раздела мы проводили, используя представление классической механики о волновом пакете. В уравнении Шредингера функция Y ( r , t ) приобретает новый смысл. Она называется волновой функцией и описывает уже не суперпозицию колебаний, но состояние реальной частицы. Перечислим основные свойства волновой функции.

Волновая функция как вероятность

В квантовой механике вся информация о частице содержится в её волновой функции. С учётом соотношения неопределённостей, эта информация носит вероятностный характер. А именно, квадрат модуля волновой функции пропорционален вероятности W найти частицу в данной точке в заданный момент времени:

Здесь звёздочка означает комплексное сопряжение. В большинстве задач, которые нам встретятся в дальнейшем, имеет место точное равенство:

Выбор между (2.1) и (2.2) определяется степенью локализации частицы в пространстве. Если вероятность найти частицу в удалённых точках исчезающе мала, то интеграл

взятый по всему пространству, сходится. В конечном итоге именно это и делает возможным равенство (2.2). Наоборот, свободно движущаяся частица может быть обнаружена в любой точке. Интеграл (2.3) для её волновой функции расходится и, следовательно, | Y | 2 не может служить вероятностью никакой величины. В этом случае справедливо отношение

которое является следствием (2.1). Ниже нам неоднократно будут встречаться волновые функции, модуль которых не стремится к нулю при удалении от начала координат, либо убывает слишком медленно. Хотя для таких функций не имеет смысла (2.2), тем не менее, отношение значений W в двух разных точках пространства равно отношению вероятностей обнаружить там частицу.

Принцип суперпозиции

Уравнение Шредингера линейно относительно волновой функции. Следовательно, любая линейная комбинация

его решений Y 1 и Y 2 также является его решением.

Таким образом, линейная комбинация волновых функций обязательно описывает некоторое состояние частицы (или системы частиц). В частности, при C2 = 0 получаем, что решение уравнения Шредингера, известно с точностью до постоянного множителя.

Нормировка

Вероятность W по своему смыслу должна удовлетворять условию нормировки

Если частица совершает своё движение в ограниченной области, то, согласно предыдущему разделу, существует интеграл:

При выполнении последнего равенства волновая функция может быть преобразована так, чтобы условие

имело место даже в том случае, когда константа C не равна единице. А именно, условию (2.7) удовлетворяет функция

Согласно сказанному в предыдущем разделе, обе эти функции описывают одно и то же состояние. Процесс перехода от Y к F называется нормировкой, а функция F — норми p ованной волновой функцией.

8.3 Ток вероятности

В газодинамике известно уравнение непрерывности для потока вещества

где r — плотность, а

поток вещества, движущегося со скоростью v . Оно справедливо в том случае, если нет источников и стоков частиц. Аналогичное соотношение

можно вывести и для плотности вероятности W . Сначала проведём расчёты для одномерного случая. Для определения вектора тока вероятности S воспользуемся уравнением Шредингера (1.4) для свободной частицы. Запишем его также для комплексно–сопряжённой волновой функции:

то, подставляя сюда выражения (1.4) и (3.4) для производных по времени от Y и Y *, находим

Последнее уравнение представляет собой аналог одномерного уравнения непрерывности, если поток вероятности принять равным

Обобщение на случай трёх измерений даёт уравнение непрерывности (3.3) с дивергенцией вектора

Физический смысл определённого таким образом потока вероятности S можно выяснить, вычислив его для свободной частицы, то есть, для волновой функции вида

Производная выражается через Y :

Аналогично вычисляем производную от комплексно сопряжённой функции:

Подставляя (3.7) и (3.7а) в (3.5), получаем

Нетрудно убедиться, что в трёхмерном случае мы приходим к формуле

Она полностью аналогична (3.2), где роль плотности выполняет плотность вероятности W, а вместо потока массы j надо подставить вектор S.

Поток вероятности равен нулю в случае действительной волновой функции. Следовательно, последняя описывает финитное движение, то есть, движение в ограниченной области пространства.

8.4 Операторы физических величин

В этом разделе мы соберём вместе явные выражения для самых важных для нас операторов. Оператор энергии сводится к дифференцированию по времени:

а оператор проекции импульса на одну из координат — к дифференцированию по этой координате:

Аналогичные формулы справедливы для проекций момента на две другие оси, а в трёхмерном случае

вектор импульса выражается через оператор градиента:

При формировании операторов можно пользоваться соотношениями между классическими величинами. Так, оператор кинетической энергии с помощью соотношения

выражается посредством оператора Лапласа:

В отсутствие внешних полей полная энергия частицы равна её кинетической энергии:

В квантовой механике этому факту соответствует уравнение Шредингера для свободной частицы:

Последняя формула является обобщением (1.4) на случай трёх измерений.

Оператор координаты сводится к простому умножению на эту координату. То же самое справедливо и для оператора, представляющего любую функцию координат. Например,

В последующих разделах мы познакомимся с оператором момента вращения.

С математической точки зрения уравнения квантовой механики сводятся к линейной задаче на собственные значения с заданными граничными условиями.

Здесь Y i — собственные функции, а G i — собственные значения оператора . Физический смысл (4.7) заключается в следующем. В результате измерения можно обнаружить только те значения физической величины, которые входят в спектр собственных значений её оператора.

Спектр собственных значений может быть как дискретным, так и непрерывным. Например, непрерывным является спектр импульса свободной частицы. Покажем это для одномерного случая. Вычислим собственное значение p проекции импульса на ось x :


Решение последнего уравнения

в комплексной форме выражает «мгновенную фотографию» плоской монохроматической волны, распространяющейся вдоль оси x . Не удивительно, что мы получили именно такое решение, так как мы исходили из представления плоских волн при получении уравнения Шредингера. Временнýю часть волновой функции мы установим позже.

Отметим важную особенность функции (4.10): квадрат её модуля равен константе |C| 2 . Следовательно, свободно летящая частица с равной вероятностью может находиться в любой точке пространства. Как уже было сказано в разделе (2.1), такую функцию невозможно нормировать приведённым там способом. Таким образом, она представляет собой пример волновой функции, квадрат модуля которой пропорционален вероятности в смысле (2.4), но не имеет места (2.1).

Среднее значение.

В этом разделе мы с самого начала предполагаем, что волновая функция квадратично интегрируема, то есть существует интеграл (2.6). Как известно из математики, среднее значение функции координат f ( x ) определяется с помощью вероятности W( x ) как

Для операторов, зависящих только от координат, это определение без всяких изменений переносится в квантовую механику. Нужно только вместо вероятности написать квадрат модуля волновой функции:

Здесь интегрирование ведётся по всей области изменения аргумента x .

В общем случае, когда физическая величина G не является функцией координат (например, импульс), её среднее значение определяется как

Подынтегральная функция состоит из двух сомножителей: Y * ( x ) и — результата воздействия оператора на функцию Y ( x ). Формула (4.11) является частным случаем (4.12), когда

Пусть система находится в определённом состоянии, соответствующем собственному значению G i и собственному вектору — волновой функции Y i . Если физическую величину G усреднять с помощью функции Y i , то среднее значение равно G i . В этом легко убедиться, подставив (4.7) в (4.12).

Уравнение Шрёдингера

Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.


источники:

http://heritage.sai.msu.ru/ucheb/Zemcov/Part_2_Quant_ther/Chapter_08/Chapter_08.htm

http://elementy.ru/trefil/21/Uravnenie_Shryodingera