Уравнение силы масса на ускорение

Произведение массы на ускорение. Второй закон Ньютона и его формулировки. Пример задачи

Второй закон Ньютона является, пожалуй, самым известным среди трех законов классической механики, которые постулировал английский ученый в середине XVII века. Действительно, при решении задач по физике на движение и равновесие тел каждый знает, что означает произведение массы на ускорение. Рассмотрим подробнее особенности этого закона в данной статье.

Место второго закона Ньютона в классической механике

Вам будет интересно: Технологический детерминизм: понятие, основные концепции, теория

Классическая механика основывается на трех столпах — трех законах Исаака Ньютона. Первый из них описывает поведение тела, если на него не действуют внешние силы, второй описывает это поведение, когда такие силы возникают, наконец, третий закон — это закон взаимодействия тел. Второй закон недаром занимает центральное место, поскольку он связывает первый и третий постулаты в единую и стройную теорию — классическую механику.

Еще одной важной особенностью второго закона является то, что он предлагает математический инструмент для количественного описания взаимодействия — это произведение массы на ускорение. Первый и третий же законы используют второй закон, чтобы получить количественную информацию о процессе действия сил.

Импульс силы

Далее в статье будет представлена формула второго закона Ньютона, которая фигурирует во всех современных учебниках по физике. Тем не менее изначально сам создатель этой формулы приводил ее в несколько ином виде.

При постулировании второго закона Ньютон отталкивался от первого. Его математически можно записать через величину количества движения p¯. Она равна:

Количество движения является векторной величиной, которая связана с инерционными свойствами тела. Последние определяются массой m, которая в приведенной формуле является коэффициентом, связывающим скорость v¯ и количество движения p¯. Отметим, что две последние характеристики представляют собой векторные величины. Они направлены в одну и ту же сторону.

Что будет происходить, если на тело, имеющее количество движения p¯, начнет действовать некоторая внешняя сила F¯? Правильно, количество движения изменится на величину dp¯. Причем эта величина будет тем больше по модулю, чем дольше действует сила F¯ на тело. Этот установленный экспериментально факт позволяет записать следующее равенство:

Эта формула является 2-м законом Ньютона, представленным самим ученым в своих работах. Из нее следует важный вывод: вектор изменения количества движения всегда направлен так же, как вектор силы, вызвавшей это изменение. В этом выражении левая часть называется импульсом силы. Это название привело к тому, что саму величину количества движения часто называют импульсом.

Сила, масса и ускорение

Теперь получим общепринятую формулу рассматриваемого закона классической механики. Для этого подставим в выражение в предыдущем пункте величину dp¯ и поделим обе части равенства на время dt. Имеем:

Производная скорости по времени — это линейное ускорение a¯. Поэтому последнее равенство можно переписать в виде:

Таким образом, действующая на рассматриваемое тело внешняя сила F¯ приводит к появлению линейного ускорения a¯. При этом вектора этих физических величин направлены в одну сторону. Это равенство можно прочитать наоборот: масса на ускорение равна силе, действующей на тело.

Решение задачи

Покажем на примере физической задачи, как использовать рассмотренный закон.

Падая вниз, камень за каждую секунду увеличивал свою скорость на 1,62 м/с. Необходимо определить силу, действующую на камень, если его масса равна 0,3 кг.

Согласно определению, ускорение — это быстрота изменения скорости. В данном случае его модуль равен:

a = v/t = 1,62/1 = 1,62 м/с2.

Поскольку произведение массы на ускорение даст нам искомую силу, то получаем:

F = m*a = 0,3*1,62 = 0,486 Н.

Заметим, что рассмотренное ускорение имеют все тела, которые падают на Луну вблизи ее поверхности. Это означает, что найденная нами сила соответствует силе лунного притяжения.

Физика. Ускорение, масса, сила

Ускорение это изменение скорости в единицу времени.
a = V / t
Ускорение в физике это не основная физическая величина, а производная.
Преобразуем: V = S / t тогда : a = S / t 2
именно это дает запись формулы ускорения в основных величинах и единицу измерения ускорения : метры на секунды в квадрате.

Таким образом: ускорение есть там, где есть линейная скорость движения и эта скорость — меняется в числовом значении.
Но у скорости есть еще направление.
И физики не смогли это дело оставить так, чтобы не запутать и сказали: раз скорость векторная величина, пусть будет так, что ускорение возникает и при изменении направления.
Так ускорение появляется при равномерном круговом движении?
Для нас ясность тут очень важна, так как это траектория движения планет.
Как так, спрашиваем мы, скорость движения постоянна, а появилось ускорение?
Это же нонсенс!

Предлагается:1. чтобы исключить двойное толкование, принять ускорение, как только изменение линейной скорости в единицу времени.
Далее»
2.Основным написанием формулы ускорения считать a = S / t 2,
а написание a = V / t — производным. И еще точнее, чтобы убрать квадратную функцию времени (чего не существует) a = S1- S2 / t. Т.е. ускорение это разница (изменение) пройденного пути в единицу времени. И всё!

3. Считать ускорение не физической, а математической величиной, употребимой в узких пределах.
4. Определение «изменение направления» к ускорению не применять. Считать ускорением только изменение величины, а не направления.

Где мы в формулах встречаем ускорение?
Формула силы. По второму закону Ньютона F = m х a означает, что, если к массе m приложить силу F , то тело будет двигаться с скоростью, которая имеет ускорение а. И чтобы вычислить ускорение, нам надо замерить путь и время, так зачем же оно? Только для облегчения записи вычислений.
Ускорение со знаком плюс означает только то, что за одну единицу времени тело будет проходить все более меньший путь.
В случае со свободным падением тела используется понятие ускорение свободного падения тела (без учета сопротивления воздуха) g

И формула пишется F = m х g. Но эта формула справедлива только для случая, когда есть состояние свободного падения. Если тело неподвижно относительно центра Земли, то эта формула не используется, так как приводит к ошибке.
Например. Тело массой m (1 кг.) лежит на весах.
Что показывают весы? Они показывают массу в 1 кг.
А не вес, как силу притяжения ( m х g).
Тело давит на опору весов, с силой притяжения, а по Закону Всемирного тяготения
сила тяжести m х M / R2 ускорения свободного падения не содержит и вес показывают только массу. Таким образом, если задать задачу: арбуз массой m положили на весы и спросили какой вес? А потом перемножить m х g получим неверный результат, потому что весы показывают значение массы, а ускорения g
здесь вообще нет.

Напишите такое уравнение:

m х g = m х M / R2 и получите, после сокращения массы g = M / R2
и эта формула хороша только тем, что объясняет почему ускорение свободного падения не зависит от массы тела , а зависит только от массы Земли и радиуса в квадрате.

Но математически эта формула выглядит как неверная, так как не совпадают единицы измерения.
Наши ученые тут опять отличились. Они ввели гравитационную постоянную и G дали ей единицу измерения м3·с;2·кг;1 (ответ сошелся) а вопрос остался:
Есть от чего сойти с ума : во втором законе ускорение от массы зависит, а при свободном падении — нет!
А происходит это от того, что при увеличении массы силя притяжения растет, а ускорение по второму закону уменьшается и результирующая остается неизменной от массы.

Вообще, вес это еще одна производная от действия гравитации величина, которая в уважающих себя учебниках физики не рассматривается, но очень важна на базаре.

Рассмотрим случай невесомости, когда вес исчезает. Например, парашютист прыгает
с самолета, а парашют дома забыл. (сопротивление воздуха не учитываем, как всегда, зачем ему теперь воздух нужен) Скорость растет соразмерно с величиной 9.8 метров пройденного пути в секунду!
И здесь появляется еще один парадокс: сила гравитации есть, масса есть, ускорение. тоже есть, а давления на опору (как рыночного понятия веса) нет!

А, если есть сопротивление воздуха?
Тогда: F = m х (g — а)
Здесь а это то реальное ускорение, которое возникает и оно меньше ускорения свободного падения. И, если оно равно g — сила давление опору ( или вес ) равен нулю.

Второй закон Ньютона

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Данный урок создан для самостоятельного изучения темы «Второй закон Ньютона», которая входит в школьный курс физики за 9 класс. В ходе занятия учитель расскажет о двух понятиях – силе и втором законе Ньютона. Второй закон Ньютона относится к взаимодействию тел, он может описывать действие одной или нескольких сил.


источники:

http://proza.ru/2015/09/27/1494

http://interneturok.ru/lesson/physics/9-klass/zakony-vzaimodejstviya-i-dvizheniya-tel/vtoroy-zakon-nyutona