Уравнение силы тока активного сопротивления

Конденсатор в цепи переменного тока

При изучении постоянного тока мы узнали, что он не может проходить в цепи, в которой есть конденсатор. Так как конденсатор — это две пластины, разделенные слоем диэлектрика. Для цепи постоянного тока конденсатор будет, как разрыв в цепи. Если конденсатор пропускает постоянный ток, значит, он неисправен.

Рассмотрим, как будет меняться сила тока в цепи, содержащей конденсатор, с течением времени. При этом будем пренебрегать сопротивлением соединяющих проводов и обкладок конденсатора.

Напряжение на конденсаторе будет равняться напряжению на концах цепи. Значит, мы можем приравнять эти две величины.

Видим, что заряд будет изменяться по гармоническому закону. Сила тока — это скорость изменения заряда. Значит, если возьмем производную от заряда, получим выражение для силы тока.

I = q’ = UmC ω cos( ω t+ π /2).

Разность фаз между колебаниями силы тока и заряда, а также напряжения, получилась равной π /2. Получается, что колебания силы тока опережают по фазе колебания напряжения на π /2. Это представлено на рисунке.

Из уравнения колебаний силы тока получаем выражение для амплитуды силы тока:

Введем следующее обозначение:

Запишем следующее выражение закона Ома, используя Xc и действующие значения силы тока и напряжения:

Xc — величина, называемая емкостным сопротивлением.

Катушка индуктивности в цепи переменного тока

Индуктивность в цепи переменного тока будет влиять на силу переменного тока.

Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.

Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.

Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.

Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Следовательно: ei = -u.

Сила тока будет изменяться по гармоническому закону: I = Im sin(ωt).

ЭДС самоиндукции будет равна: Ei = -Li’ = -L ω Im cos( ω t).

Следовательно, напряжение будет равно: U = L ω Im cos( ω t) = L ω Im sin( ω t+ π /2).

Im = Um /(ωL). Введем обозначение XL = ωL. Эта величина называется индуктивное сопротивление.

Что такое активное сопротивление в цепи переменного тока

Переменный ток — основной источник бытового и промышленного электроснабжения. При подаче напряжения на потребителях возникает сопротивление. Статья даст подробное разъяснение, что такое активное сопротивление в цепи переменного тока.

Дополнительно будет дана формула расчета этого значения, описаны разновидности, условия для идеальной цепи и основные факторы, влияющие на увеличение этих значений.

Переменный ток

Для того чтобы понять, что такое активное сопротивление, необходимо разобраться в самом явлении переменного тока. Переменным является такой тип тока, который непрерывно изменяет направление своего протекания. Во время протекания потенциалы переменного тока постоянно изменяются. Это происходит благодаря работе генератора, а точнее за счет взаимодействия магнитного поля с медной обмоткой. Движение хорошо прослеживается при помощи осциллографа. Своей формой оно напоминает синусоиду.

Роль переменного тока сложно переоценить. Главное его достоинство заключается в простоте передачи от источника к потребителю, возможность занижать или увеличивать напряжение при помощи трансформаторов. Также, переменные электрические токи можно доставлять потребителю с гораздо меньшими затратами.

Сопротивление

Сопротивлением является способность проводника замедлять прохождение заряженных частиц через свою структуру. На эту способность влияет материал проводника, его толщина и длина. Единицей измерения электрического сопротивления является 1 Ом.

Расчет производится при пропускании через проводник напряжения в один вольт и силой тока равной одному амперу. В электрических схемах данный параметр обозначается буквой «R».

Активное сопротивление

Переменный ток доставляется потребителю с целью его преобразования в иные виды энергии, например, тепло и свет. В бытовых сетях преобладает использование однофазного переменного тока. При подключении потребителя создается активное сопротивление.

Простые цепи переменного тока с активным сопротивлением включает в себя генератор тока и идеальный резистор. При этом должны соблюдаться необходимые условия для идеальной цепи:

  1. Активное сопротивление не должно равняться нулю, обязательное условие.
  2. Емкость и индуктивность цепи должны быть равны нулю.

Также, для идеального активного сопротивления должны соблюдаться следующие условия:

  1. Соблюдаются закон Ома для мгновенных, среднеквадратичных и амплитудных параметров цепи.
  2. Значение полностью независимо от амплитудных колебаний.
  3. Между током и напряжением отсутствует сдвиг фаз.
  4. Элемент, находящийся под напряжением, выделяет долю тепловой энергии, то есть нагревается.

Все эти условия позволяют электрическим приборам работать в пределах точно установленных параметров с максимальным КПД. Любое изменение может быть причиной отсутствия надежного контактного соединения или неисправностью самого потребителя.

Для того чтобы рассчитать величину активного сопротивления в цепи, необходимо знать величину напряжения и силы тока. Для расчета используется формула: R=U/I. Формула состоит из следующих значений:

  1. «R» — сопротивление, Ом;
  2. «U» — величина напряжения, вольт;
  3. «I» — величина силы тока, ампер.

Далее можно сделать простой расчет. В качестве потребителя выступает электрическая печь, включенная в цепь однофазного переменного тока:

  1. Напряжение цепи 240 вольт.
  2. При замере силы тока получено значение 4 ампера.
  3. R= 240/4=60 Ом.

Расчетная величина активного сопротивления — это не окончательное значение. На нее влияет прежде всего сечение проводов включенных в цепь, схема взаимодействия между цепями емкостных и полупроводниковых элементов.

Активное значение цепи также вызывает безвозвратную потерю первоначальной электрической энергии, а так же приводит к снижению мощности.

Активная емкость

В простой схеме величина активного значения также зависит от активной емкости. Для идеальной емкости — в схеме под переменным напряжением должен находится конденсатор. Идеальный конденсатор обозначается буквой «С».

Для получения идеальной цепи с активной емкостью, должны соблюдаться следующие условия:

  1. Активная индуктивность и сопротивление должны быть равны 0.
  2. Емкость самого конденсатора в цепи должна быть больше 0.

При данных условиях электрическая цепь приобретает следующие особенности:

  1. Закон Ома соблюдается без малейших отклонений.
  2. На переменный ток оказывается емкостное сопротивление «X».
  3. Прослеживается нелинейное уменьшение емкости при повышении частоты колебаний.
  4. Между напряжением и током происходит сдвиг по фазе до величины 90 градусов.
  5. Емкость цепи непостоянна. Причина кроется в периодическом накоплении и отдаче энергии.

Цепь переменного тока с активным емкостным сопротивлением может дополняться индуктивностью. Для создания индуктивности, в цепь включается катушка индуктивности. Катушка также добавляет свою долю сопротивления в общую цепь. При таком подключении в схеме появляется индуктивное сопротивление. Оба элемента: катушка и конденсатор, не являются конечными потребителями энергии. Эти элементы не находятся под постоянным напряжением, их работа строится на накоплении и отдаче тока в цепь.

Мощность

При наличии активного сопротивления, значительно снижается мощность этой цепи. Это значение зависит от скорости снижения напряжения и преобразования электрической энергии. В электрической схеме мощность обозначается буквой «P».

Для того чтобы добиться минимального снижения средней и мгновенной мощностей, которые образуются в момент появления активного сопротивления, снижения напряжения и преобразования энергий, необходимо чтобы простейшие цепи состояли из идеальных элементов с высокой электрической проводимостью.

Зависимость

Величина активного сопротивления во многом зависит от диаметра проводников. При подаче высокочастотных токов, сопротивление проводника может быть снижено, только если его поверхностный слой намного тоньше основного. Для того чтобы добиться идеального сечения, этот слой должен состоять из материала с очень высокой проводимостью, например, золота или серебра. Данный эффект возникает по причине взаимодействия напряжения и магнитного поля, образованного им. Поле сильно влияет на ток, протекающий по проводнику и выталкивает его на поверхностный слой. Таким образом ближе к поверхности проводника проводимость снижается и становится критично малой в его верхнем слое.

Так же присутствуют следующие эффекты: потери утечки и диэлектрические потери. Оба эффекта связаны с наличием конденсатора в цепи. Диэлектрические потери возникают за счет увеличения температуры диэлектрика внутри конденсатора. Потеря утечки возникает в следствии доли пробоя изолятор конденсатора.

Гистерезис. Это тоже тип потери энергии переменного тока. Такая потеря возникает при формировании магнитного поля вокруг предметов из металла. Электромагнитное воздействие приводит к нагреванию металла, а значит преобразованию энергии.

Последним фактором утечки является радиоизлучение. Радиоволны появляются по причине сильного магнитного поля и его взаимодействия с металлами цепи. Для подавления, особенно в радиоаппаратуре, используются экраны, которые впитывают часть поля и отталкивают остальную долю.

Замер

Измерение сопротивления осуществляется следующими способами:

  1. Вольтметр и амперметр. С помощью этих приборов измеряются величины силы тока и напряжения, а после производится расчет по описанной выше формуле.
  2. Логометром. Это прибор для измерения сопротивления под высоким напряжением и большой частотой. Его главное преимущество в сильном исключении зависимостей и погрешностей.
  3. Омметр. Прибор используется только для измерения по типу усилителя сигнала. При использовании омметра учитывается высокая погрешность, которая может достигать 5 %. Обычные омметры электронного типа не подходят для замера активного сопротивления.

Заключение

Активное сопротивление переменного тока важная величина. Она позволяет точно рассчитать, какая электроэнергия расходуется и какие ее утечки при этом возможны. В промышленных сетях при помощи этой величины рассчитывается доля потребления на различных участках с разными по мощности потребителями.

Видео по теме

Активное сопротивление в цепи переменного тока

Электрические лампы накаливания, печи сопротивления, бытовые нагревательные приборы, реостаты и другие приемники, где электрическая энергия преобразуется в тепловую, на схемах замещения обычно представлены только сопротивлением R.
Для схемы, изображенной на рис. 13.1, а, заданы сопротивление R и напряжение, изменяющееся по закону

u = Umsinωt

Найдём ток и мощность в цепи.

Ток в цепи переменного тока с активным сопротивлением.

По закону Ома найдем выражение для мгновенного тока:

где Im = Um/R — амплитуда тока

Из уравнений напряжения и тока видно, что начальные фазы обеих кривых одинаковы, т. е. напряжение и ток в цепи с сопротивлением R совпадают по фазе. Это показано на графиках и векторной диаграмме (рис. 13.1, б, б).

Действующий ток найдем, разделив амплитуду на √ 2:

Формулы (13.1) выражают закон Ома для цепи переменного тока с сопротивлением R. Внешне они ничем не отличаются от формулы для цепи постоянного тока, если переменные напряжение и ток выражены действующими величинами.

Мгновенная мощность в цепи переменного тока с активным сопротивлением.

При переменных величинах напряжения и тока скорость преобразования электрической энергии в приемнике, т. е. его мощность, тоже изменяется. Мгновенная мощность равна произведению мгновенных величин напряжения и тока: p = Umsinωt * Imsinωt = UmImsin 2 ωt

Из тригонометрии найдём

Более наглядное представление о характере изменения мощности в цепи дает график в прямоугольной системе координат, который строится после умножения ординат кривых напряжения и тока, соответствующих ряду значений их общего аргумента — времени t. Зависимость мощности от времени — периодическая кривая (рис. 13.2). Если ось времени t поднять по чертежу на величину р = Pm√2 = UmIm√2, то относительно новой оси t’ график мощности является синусоидой с двойной частотой и начальной фазой 90°:

Таким образом, в первоначальной системе координат мгновенная, мощность равна сумме постоянной величины Р = UmIm√2 и перемен- ной р’:

р = Р + р’

Анализируя график мгновенной мощности, нетрудно заметить, что мощность в течение периода остается положительной, хотя ток и напряжение меняют свой знак. Это получается благодаря совпадению по фазе напряжения и тока.

Постоянство знака мощности говорит о том, что направление потока электрической энергии остается в течение периода неизменным, в данном случае от сети (от источника энергии) в приемник с сопротивлением R, где электрическая энергия необратимо преобразуется в другой вид энергии. В этом случае электрическая энергия называется активной.

Если R — сопротивление проводника, то в соответствии с законом Ленца — Джоуля электрическая энергия в нем преобразуется в тепло.

Активная мощность для цепи переменного тока с активным сопротивлением

Скорость преобразования электрической энергии в другой вид энергии за конечный промежуток времени, значительно больший периода изменения тока, характеризуется средней мощностью. Она равна средней мощности за период, которую называют активной.

Активная мощность — среднее арифметическое мгновенной мощности за период.

Для рассматриваемой цепи активную мощность Р нетрудно определить из графика рис. 13.2. Средняя величина мощности равна высоте прямоугольника с основанием Т, равновеликого площади, ограниченной кривой р(t) и осью абсцисс (на рисунке заштриховано).

Равенство площадей РТ = Sp выполняется, если высоту прямоугольника взять равной половине наибольшей мгновенной мощности Pm.

В этом случае часть площади Sp , находящаяся выше прямоугольника, точно укладывается в оставшуюся незаштрихованной его часть:

P = UI

Активная мощность для данной цепи равна произведению действующих величин тока и напряжения:

P = UI = I 2 R

С математической точки зрения активная мощность является постоянной составляющей в уравнении мгновенной мощности p(t) [см. выражение (13.2)].

Среднюю мощность за период можно найти интегрированием уравнения (13.2) в пределах периода:

Сопротивление R, определяемое из формулы (13.3) отношением активной мощности цепи к квадрату действующего тока, называется активным электрическим сопротивлением.


источники:

http://profazu.ru/knowledge/electrical/aktivnoe-soprotivlenie-v-tsepi-peremennogo-toka.html

http://electrikam.com/aktivnoe-soprotivlenie-v-cepi-peremennogo-toka/