Уравнение синус в квадрате равно

Косинус в квадрате и синус в квадрате

Разбираемся с простыми понятиями: синус и косинус и вычисление косинуса в квадрате и синуса в квадрате.

Синус и косинус изучаются в тригонометрии (науке о треугольниках с прямым углом).

Поэтому для начала вспомним основные понятия прямоугольного треугольника:

Гипотенуза — сторона, которая всегда лежит напротив прямого угла (угла в 90 градусов). Гипотенуза — это самая длинная сторона треугольника с прямым углом.

Оставшиеся две стороны в прямоугольном треугольнике называются катетами.

Также следует помнить, что три угла в треугольнике всегда имеют сумму в 180°.

Теперь переходим к косинусу и синусу угла альфа (∠α) (так можно назвать любой непрямой угол в треугольнике или использовать в качестве обозначение икс — «x», что не меняет сути).

Синус угла альфа (sin ∠α) — это отношение противолежащего катета (сторона, лежащая напротив соответствующего угла) к гипотенузе. Если смотреть по рисунку, то sin ∠ABC = AC / BC

Косинус угла альфа (cos ∠α) — отношение прилежащего к углу катета к гипотенузе. Если снова смотреть по рисунку выше, то cos ∠ABC = AB / BC

И просто для напоминания: косинус и синус никогда не будут больше единицы, так как любой катит короче гипотенузы (а гипотенуза — это самая длинная сторона любого треугольника, ведь самая длинная сторона расположена напротив самого большого угла в треугольнике).

Косинус в квадрате, синус в квадрате

Теперь переходим к основным тригонометрическим формулам: вычисление косинуса в квадрате и синуса в квадрате.

Для их вычисления следует запомнить основное тригонометрическое тождество:

sin 2 α + cos 2 α = 1 (синус квадрат плюс косинус квадрат одного угла всегда равняются единице).

Из тригонометрического тождества делаем выводы о синусе:

sin 2 α = 1 — cos 2 α

или более сложный вариант формулы: синус квадрат альфа равен единице минус косинус двойного угла альфа и всё это делить на два.

sin 2 α = (1 – cos(2α)) / 2

​​​​​​​Из тригонометрического тождества делаем выводы о косинусе:

cos 2 α = 1 — sin 2 α

или более сложный вариант формулы: косинус квадрат альфа равен единице плюс косинус двойного угла альфа и также делим всё на два.

cos 2 α = (1 + cos(2α)) / 2

Эти две более сложные формулы синуса в квадрате и косинуса в квадрате называют еще «понижение степени для квадратов тригонометрических функций». Т.е. была вторая степень, понизили до первой и вычисления стали удобнее.

Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание

Добавить интересную новость

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) < echo (Html::a('Войдите', ['/user/security/login'], ['class' =>»]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else < if(!empty(\Yii::$app->user->identity->profile->first_name) || !empty(\Yii::$app->user->identity->profile->surname))< $name = \Yii::$app->user->identity->profile->first_name . ‘ ‘ . \Yii::$app->user->identity->profile->surname; > else < $name = ''; >echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

При правильном ответе Вы получите 8 баллов

Упростить выражение с квадратом косинуса:

Выберите всего один правильный ответ.

Добавление комментариев доступно только зарегистрированным пользователям

Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.

28.01.17 / 22:14, Иван ИвановичОтветить -2

Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Простейшие тригонометрические уравнения

п.1. Решение простейших тригонометрических уравнений

Про аркфункции (обратные тригонометрические функции) и их свойства – см. §9-11 данного справочника.
Обобщим результаты решения простейших уравнений, полученные в этих параграфах.

УравнениеОДЗРешение
$$ sinx=a $$$$ -1\leq a\leq 1 $$\begin x=(-1)^k arcsin a+\pi k\Leftrightarrow\\ \Leftrightarrow \left[ \begin x_1=arcsin a+2\pi k\\ x_2=\pi-arcsin a+2\pi k \end \right. \end
$$ cosx=a $$$$ -1\leq a\leq 1 $$\begin x=\pm arccos a+2\pi k \end
$$ tgx=a $$$$ a\in\mathbb $$\begin x=arctga+\pi k \end
$$ ctgx=a $$$$ a\in\mathbb $$\begin x=arcctga+\pi k\Leftrightarrow\\ \Leftrightarrow x=arctg\frac1a+\pi k \end

Частные случаи, для которых запись результата отличается от общей формулы:

a=0a=-1a=1
$$ sinx=a $$$$ x=\pi k $$$$ -\frac\pi2+2\pi k $$$$ \frac\pi2+2\pi k $$
$$ cosx=a $$$$ x=\frac\pi2+\pi k $$\begin \pi+2\pi k \end\begin 2\pi k \end
\begin sinx=\frac<\sqrt<2>><2>\\ x=(-1)^k arcsin\frac<\sqrt<2>><2>+\pi k=(-1)^k\frac\pi4+\pi k\Leftrightarrow \left[ \begin x_1=\frac\pi4+2\pi k\\ x_2=\frac<3\pi><4>+2\pi k \end \right. \end
\begin ctgx=3\\ x=arcctg3+\pi k\Leftrightarrow x=arctg\frac13+\pi k \end

п.2. Решение уравнений с квадратом тригонометрической функции

К простейшим также можно отнести уравнения вида:

УравнениеОДЗРешение
$$ sin^2x=a $$$$ 0\leq a\leq 1 $$\begin x=\pm arcsin\sqrt+\pi k \end
$$ cos^2x=a $$$$ 0\leq a\leq 1 $$\begin x=\pm arccos\sqrt+\pi k \end
$$ tg^2x=a $$$$ a\geq 0 $$\begin x=\pm arctg\sqrt+\pi k \end
$$ ctg^2x=a $$$$ a\geq 0 $$\begin x=\pm arcctg\sqrt+\pi k \end
\begin cos^x=\frac14\\ x=\pm arccos\frac12+\pi k=\pm\frac\pi3+\pi k \end \begin tg^2x=1\\ x=\pm arctg1+\pi k=\pm\frac\pi4+\pi k \end

п.3. Различные формы записи решений

Как известно, в тригонометрии все функции связаны между собой базовыми отношениями (см. §12 данного справочника). Если нам известна одна из функций, мы можем без труда найти все остальные. Преобразования в уравнениях приводят к тому, что решение может быть записано через любую из этих функций.
Кроме того, понижение степени или универсальная подстановка (см. §15 данного справочника) приводят к увеличению или уменьшению исходного угла в 2 раза, и ответ может оказаться очень непохожим на решения, полученные другими способами для того же уравнения.

Решим уравнение \(sin^2x=0,64\)
Для квадрата синуса решение имеет вид: \begin x=\pm arcsin\sqrt<0,64>+\pi k=\\ =\pm arcsin0,8+\pi k \end На числовой окружности этому решению соответствуют 4 базовых точки, которые можно представить по-разному: \begin x=\pm arcsin0,8+\pi k=\\ =\pm arccos0,6+\pi k=\\ =\pm arctg\frac43+\pi k \end

Если решать уравнение с помощью формулы понижения степени, получаем: \begin sin^2x=\frac<1-cos2x><2>=0,64\Rightarrow 1-cos2x=1,28\Rightarrow cos2x=-0,28\Rightarrow\\ \Rightarrow 2x=\pm arccos(-0,28)+2\pi k\Rightarrow x=\pm\frac12 arccos(-0,28)+\pi k \end Если же решать уравнение с помощью универсальной подстановки: \begin sin^2x=\left(\frac<2tg\frac<2>><1+tg^2\frac<2>>\right)^2=0,64\Rightarrow\frac<2tg\frac<2>><1+tg^2\frac<2>>=\pm 0,8\Rightarrow 1+tg^2\frac<2>=\pm 2,5tg\frac<2>\Rightarrow\\ \left[ \begin tg^2\frac<2>+2,5tg\frac<2>+1=0\\ tg^2\frac<2>-2,5tg\frac<2>+1=0 \end \right. \Rightarrow \left[ \begin \left(tg\frac<2>+2\right)\left(tg\frac<2>+\frac12\right)=0\\ \left(tg\frac<2>-2\right)\left(tg\frac<2>-\frac12\right)=0 \end \right. \Rightarrow \left[ \begin tg\frac<2>=\pm 2\\ tg\frac<2>=\pm\frac12 \end \right. \Rightarrow\\ \Rightarrow \left[ \begin x=\pm arctg2+2\pi k\\ x=\pm 2arctg\frac12+2\pi k \end \right. \end Таким образом, решая одно и то же уравнение, мы получаем очень разные по виду ответы. Однако, при проверке, все полученные множества решений совпадают.

п.4. Примеры

Пример 1. Решите уравнение обычным способом и с помощью универсальной подстановки. Сравните полученные ответы и множества решений. Сделайте вывод.
a) \(sin x=\frac<\sqrt<3>><2>\)

Обычный способ: \begin x=(-1)^k arcsin\frac<\sqrt<3>><2>+\pi k=(-1)^k\frac\pi3 +\pi k \Leftrightarrow\\ \Leftrightarrow \left[ \begin x=\frac\pi3+2\pi k\\ x=\frac<2\pi><3>+2\pi k \end \right. \end 2 базовых точки на числовой окружности.

Универсальная подстановка: \begin sinx=\frac<2tg\frac<2>><1+tg^2\frac<2>>\Rightarrow 1+tg^2\frac<2>=\frac<2tg\frac<2>><\sqrt<3>/2>\Rightarrow tg^2\frac<2>-\frac<4><\sqrt<3>>tg\frac<2>+1=0\\ D=\left(-\frac<4><\sqrt<3>>\right)^2-4=\frac<16><3>-4=\frac43,\ \ tg\frac<2>=\frac<\frac<4><\sqrt<3>>\pm\frac<2><\sqrt<3>>><2>\Rightarrow \left[ \begin tg\frac<2>=\frac<1><\sqrt<3>>\\ tg\frac<2>=\sqrt <3>\end \right. \\ \left[ \begin \frac<2>=\frac\pi6+\pi k\\ \frac<2>=\frac\pi3+\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi3+2\pi k\\ x=\frac<2\pi><3>+2\pi k \end \right. \Leftrightarrow x=(-1)^k\frac\pi3+\pi k \end Ответы и множества решений совпадают.
Ответ: \((-1)^k\frac\pi3+\pi k\)

Обычный способ: \begin 2x=\pm arccos\frac12+2\pi k\Rightarrow\\ x=\pm\frac12\left(arccos\frac12+2\pi k\right)=\\ =\pm\frac12\cdot\frac\pi3+\pi k=\pm\frac\pi6+\pi k \end 4 базовых точки на числовой окружности.

Универсальная подстановка: \begin cos2x=\frac<1-tg^2x><1+tg^2x>=\frac12\Rightarrow 2(1-tg^2x)=1+tg^2x\Rightarrow 3tg^2x=1\Rightarrow tgx=\pm\frac<1><\sqrt<3>>\\ x=\pm\frac\pi6+\pi k \end Ответы и множества решений совпадают.
Ответ: \(\pm\frac\pi6+\pi k\)

в) \(sin\left(\frac<2>+\frac\pi3\right)=1\)
Обычный способ: \begin \frac<2>+\frac\pi3=\frac\pi2+2\pi k\Rightarrow \frac<2>=\frac\pi2-\frac\pi3+2\pi k=\frac\pi6+2\pi k\Rightarrow x=\frac\pi 3+4\pi k \end Одна базовая точка на числовой окружности с периодом \(4\pi\).
Универсальная подстановка: \begin sin\left(\frac<2>+\frac\pi3\right)=\frac<2tg\frac<\frac<2>+\frac\pi3><2>><1+tg^2\frac<\frac<2>+\frac\pi3><2>>=1\Rightarrow tg^2\left(\frac<4>+\frac\pi6\right)-2tg\left(\frac<4>+\frac\pi6\right)-2tg\left(\frac<4>+\frac\pi6\right)+1=0\Rightarrow\\ \left(tg\left(\frac<4>+\frac\pi6\right)-1\right)^2=0\Rightarrow tg\left(\frac<4>+\frac\pi6\right)=1\Rightarrow \frac<4>+\frac\pi6=\frac<\pi><4>+\pi k\Rightarrow\\ \Rightarrow \frac<4>=\frac\pi4-\frac\pi6+\pi k\Rightarrow \frac<4>=\frac<\pi><12>+\pi k\Rightarrow x=\frac\pi3+4\pi k \end Ответы и множества решений совпадают.
Ответ: \(\frac\pi3+4\pi k\)

г*) \(tg\left(3x+\frac\pi3\right)=0\)
Обычный способ: \begin 3x+\frac\pi3=arctg0+\pi k=\pi k\Rightarrow 3x=-\frac\pi3+\pi k\Rightarrow x=-\frac\pi9+\frac<\pi k> <3>\end Универсальная подстановка: \begin tg\left(3x+\frac\pi3\right)=\frac<2tg\frac<3x+\frac\pi3><2>><1-tg^2\frac<3x+\frac\pi3><2>>=0\Rightarrow tg\frac<3x+\frac\pi3><2>=0\Rightarrow\frac<3x+\frac\pi3><2>=\pi k\Rightarrow\\ \Rightarrow 3x+\frac\pi3=2\pi k=3x=-\frac\pi3+2\pi k\Rightarrow=-\frac\pi9+\frac<2\pi> <3>\end При использовании универсальной подстановки потеряна половина корней (период увеличился в 2 раза). Это связано с тем, что мы отбросили еще одно решение: \(tg\frac<3x+\frac\pi3><2>\rightarrow\infty\) — значение тангенса у асимптот. Действительно, в этом случае дробь стремится к 0, что удовлетворяет уравнению. Получаем: \begin \frac<3x+\frac\pi3><2>=\frac\pi2+\pi k\Rightarrow 3x+\frac\pi3=\pi+2\pi k\Rightarrow 3x=\frac<2\pi><3>+2\pi k\Rightarrow x=\frac<2\pi><9>+\frac<2\pi k> <3>\end Таким образом, мы получили два семейства решений: \begin \left[ \begin x=-\frac\pi9+\frac<2\pi k><3>\\ x=\frac<2\pi><9>+\frac<2\pi> <3>\end \right. \end Представим последовательности решений в градусах, подставляя возрастающие значения \(k\): \begin \left[ \begin x=-20^<\circ>+120^<\circ>k=\left\<. -20^<\circ>,100^<\circ>,220^<\circ>. \right\>\\ x=40^<\circ>+120^<\circ>k=\left\<. 40^<\circ>,160^<\circ>,280^<\circ>. \right\> \end \right. \end Теперь представим полученное обычным способом решение в градусах: $$ x=-\frac\pi9+\frac<\pi k><3>=-20^<\circ>+60^<\circ>k=\left\<. -20^<\circ>,40^<\circ>,100^<\circ>,160^<\circ>,220^<\circ>,280^<\circ>. \right\> $$ Получаем, что: \begin \left[ \begin x=-\frac\pi9+\frac<2\pi k><3>\\ x=\frac<2\pi><9>+\frac<2\pi> <3>\end \right. \Leftrightarrow x=-\frac\pi9+\frac<\pi k> <3>\end Ответы и множества решений после учета значений у асимптот совпадают.
Ответ: \(-\frac\pi9+\frac<\pi k><3>\)

Вывод: при использовании универсальной подстановки нужно быть аккуратным и помнить о возможности потерять корни. Семейство бесконечных решений для тангенса \(\frac<2>=\frac\pi2+\pi k\), т.е. \(x=\pi+2pi k\) нужно проверять как возможное решение для исходного уравнения отдельно.

При использовании универсальной подстановки можно потерять часть корней исходного тригонометрического уравнения.
Поэтому вместе с универсальной подстановкой проверяется также дополнительное возможное решение для бесконечного тангенса половинного угла: \(x=\pi+2\pi k\). \begin f(sin(x), cos(x). )=0\Leftrightarrow\\ \left[ \begin f\left(tg\left(\frac<2>\right)\right)=0\\ (?) x=\pi+2\pi k \end \right. \end где слева – исходное уравнение, а справа – универсальная подстановка и дополнительное возможное (не обязательное) семейство решений.

Пример 2. Решите уравнение обычным способом и с помощью формул понижения степени. Сравните полученные ответы и множества решений. Сделайте вывод.
a) \(sin^2x=\frac34\)

Обычный способ: \begin x=\pm arcsin\sqrt<\frac34>+\pi k=\pm arcsin\frac<\sqrt<3>><2>+\pi k=\pm\frac\pi3+\pi k \end

Формулы понижения степени: \begin sin^2x=\frac<1-cos2x><2>=\frac34\Rightarrow 1-cos2x=\frac32\Rightarrow cos2x=-\frac12\Rightarrow\\ \Rightarrow 2x=\pm arccos\left(-\frac12\right)+2\pi k=\pm\frac<2\pi><3>+2\pi k\Rightarrow x=\pm\frac\pi3+\pi k \end Ответы и множества решений совпадают.
Ответ: \(\pm\frac\pi3+\pi k\)

Обычный способ: \begin 2x=\pm arccos\sqrt<1>+\pi k=\pm 0+\pi k=\pi k\Rightarrow x=\frac<\pi k> <2>\end Формулы понижения степени: \begin cos^2 2x=\frac<1+cos4x><2>=1\Rightarrow 1+cos4x=2\Rightarrow\\ cos4x=1\Rightarrow 4x=0+2\pi k=2\pi k\Rightarrow x=\frac<\pi k> <2>\end

Ответы и множества решений совпадают.
Ответ: \(\frac<\pi k><2>\)

Обычный способ: \begin \frac<2>+\frac\pi3=\pm arcsin\sqrt<\frac14>+\pi k=\pm arcsin\frac12+\pi=\pm\frac\pi6+\pi k\\ \frac<2>=-\frac\pi3\pm\frac\pi6+\pi k= \left[ \begin \frac\pi2+\pi k\\ -\frac\pi6+\pi k \end \right. \Rightarrow x= \left[ \begin -\pi+2\pi k\\ -\frac\pi3+2\pi k \end \right. \end

Формулы понижения степени: \begin sin^2\left(\frac<2>+\frac\pi3\right)=\frac<1-cos\left(2\left(\frac<2>+\frac\pi3\right)\right)><2>=\frac14\Rightarrow 1-cos\left(x+\frac<2\pi><3>\right)=\frac12\Rightarrow\\ \Rightarrow cos\left(x+\frac<2\pi><3>\right)=\frac12\Rightarrow x+\frac<2\pi><3>=\pm arccos\left(\frac12\right)+2\pi k\Rightarrow\\ \Rightarrow x=-\frac<2\pi><3>\pm\frac\pi3+2\pi k= \left[ \begin -\pi+2\pi k\\ -\frac\pi3+2\pi k \end \right. \end Ответы и множества решений совпадают.
Ответ: \(-\pi+2\pi k,\ \ -\frac\pi3+2\pi k\)

Обычный способ: \begin x+\frac\pi4=\pm arctg\sqrt<1>+\pi k=\pm\frac\pi4+\pi k\Rightarrow\\ \Rightarrow x=-\frac\pi4\pm\frac\pi4+\pi k= \left[ \begin -\frac\pi2+\pi k\\ \pi k \end \right. \end

Формулы понижения степени: \begin cos^2\left(x+\frac\pi4\right)=\frac<1><1+\underbrace_<=1>>=\frac12\\ cos^2\left(x+\frac\pi4\right)=\frac<1+cos\left(2\left(x+\frac\pi4\right)\right)><2>=\frac12 \Rightarrow cos\left(2x+\frac\pi2\right)=0\Rightarrow\\ \Rightarrow -sin2x=0\Rightarrow sin2x=0 \Rightarrow 2x=\pi k\Rightarrow x=\frac<\pi k> <2>\end Из чертежа видно, что \begin \left[ \begin -\frac\pi2+\pi k\\ \pi k \end \right. \Leftrightarrow x=\frac<\pi k> <2>\end Оба решения соответствуют 4 базовым точкам на числовой окружности через каждые 90°. Множества решений совпадают. Ответы не совпадают, но являются равнозначными.
Ответ: \(\frac<\pi k><2>\)
Вывод: формулы понижения степени не расширяют и не урезают множество корней исходного уравнения. Полученные ответы либо совпадают, либо нет, но всегда являются равнозначными.

sin^2x (уравнение)

Найду корень уравнения: sin^2x

Решение

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_ <1>= \frac <\sqrt— b><2 a>$$
$$w_ <2>= \frac <- \sqrt— b><2 a>$$
где D = b^2 — 4*a*c — это дискриминант.
Т.к.
$$a = 1$$
$$b = 0$$
$$c = 0$$
, то

Т.к. D = 0, то корень всего один.

$$w_ <1>= 0$$
делаем обратную замену
$$\sin <\left(x \right)>= w$$
Дано уравнение
$$\sin <\left(x \right)>= w$$
— это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = 2 \pi n + \operatorname<\left(w \right)>$$
$$x = 2 \pi n — \operatorname <\left(w \right)>+ \pi$$
Или
$$x = 2 \pi n + \operatorname<\left(w \right)>$$
$$x = 2 \pi n — \operatorname <\left(w \right)>+ \pi$$
, где n — любое целое число
подставляем w:
$$x_ <1>= 2 \pi n + \operatorname <\left(w_<1>\right)>$$
$$x_ <1>= 2 \pi n + \operatorname<\left(0 \right)>$$
$$x_ <1>= 2 \pi n$$
$$x_ <2>= 2 \pi n — \operatorname <\left(w_<1>\right)> + \pi$$
$$x_ <2>= 2 \pi n — \operatorname <\left(0 \right)>+ \pi$$
$$x_ <2>= 2 \pi n + \pi$$


источники:

http://reshator.com/sprav/algebra/10-11-klass/prostejshie-trigonometricheskie-uravneniya/

http://www.kontrolnaya-rabota.ru/s/equal-one/any-uravnenie/expr/c4c4da1b6c596ccad0335d4493abe39e/