Уравнение синуса и косинуса график

Синус (sin x) и косинус (cos x) – свойства, графики, формулы

Геометрическое определение синуса и косинуса

Синус ( sin α ) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.
Косинус ( cos α ) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

Графики функций синус, y = sin x , и косинус, y = cos x

Графики синуса и косинуса смещены по оси x друг относительно друга на :
.

Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус – нечетная. Функция косинус – четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице ( n — целое).

Алгебра

План урока:

Синус и косинус угла на единичной окружности

Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:

С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что

ВС = АВ•sinα = 5•0,8 = 4

Если известно, что cosα = 0,6, то мы сможем найти и второй катет:

АС = АВ•cosα = 5•0,6 = 3

Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:

tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)

Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:

Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:

Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле

Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда

АВ = sinα•ОА = sinα•1 = sinα

С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или

Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:

Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:

хА = ОВ = cosα•ОА = cosα•1 = cosα

то есть координата хА равна cos α:

Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.

Таким образом, нам удалось дать новое определение синусу и косинусу угла:

Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть

Преобразования графиков тригонометрических функций

Общие принципы преобразования графиков функций изучались нами в главе 8, (см. §47, §48, §50 справочника для 8 класса). В этом параграфе мы рассмотрим особенности тригонометрических функций при использовании этих преобразований.

п.1. Растяжение и сжатие графиков тригонометрических функций по оси OX

Общие принципы растяжения и сжатия графиков по оси OX:

При сравнении графиков двух функций $$ y_1=f(x),\ \ y_2=f(\frac

),\ \ p\gt 1 $$ график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.
Тригонометрические функции являются периодическими: синус и косинус с периодом , тангенс и котангенс – с периодом π. Получаем следствие общих принципов:

При сравнении двух тригонометрических функций $$ y_1=f(x),\ \ y_2=f(px),\ \ p\gt 1 $$ период второй функции уменьшается в p раз: $$ T_2=\frac

$$

При сравнении двух тригонометрических функций $$ y_1=f(x),\ \ y_2=f(\frac

),\ \ p\gt 1 $$ период второй функции увеличивается в p раз: $$ T_2=pT_1 $$

Построим в одной системе координат три графика: $$ f(x)=sinx,\ \ g(x)=sin2x,\ \ h(x)=sin\frac <2>$$
Период колебаний функции \(g(x)=sin2x\) в 2 раза меньше: \(T_g=\frac<2\pi><2>=\pi\).
Период колебаний функции \(h(x)=sin\frac<2>\) в 2 раза больше: \(T_h=2\cdot 2\pi=4\pi\).

п.2. Растяжение и сжатие графиков тригонометрических функций по оси OY

Общие принципы растяжения и сжатия графиков по оси OY:

Общий принцип сжатия графиков:

Эти принципы справедливы и для тригонометрических функций.
Т.к. для графиков синуса и косинуса (синусоиды) характерна амплитуда колебаний, то также говорят, что:

  • умножение на параметр \(A\gt 1\) увеличивает амплитуду колебаний в \(A\) раз;
  • деление на параметр \(A\gt 1\) уменьшает амплитуду колебаний в \(A\) раз.

Например:

1) Построим в одной системе координат три графика: $$ f(x)=cosx,\ \ g(x)=2cosx,\ \ h(x)=\frac<1><2>cosx $$
Умножение на \(A=2\) увеличивает амплитуду колебаний в 2 раза.
Область значений функции \(g(x)=2cosx:\ y\in[-2;2]\). График растягивается по оси OY.
Деление на \(A=2\) уменьшает амплитуду колебаний в 2 раза. Область значений функции \(h(x)=\frac12 cosx:\ y\in\left[-\frac12; \frac12\right]\). График сжимается по оси OY.

2) Теперь построим $$ f(x)=tgx,\ \ g(x)=2tgx,\ \ h(x)=\frac<1><2>tgx $$
В этом случае хорошей иллюстрацией растяжения по оси OY при умножении и сжатия по оси OY при делении на \(A=2\) служит поведение функции при \(x=\frac\pi4\). $$ f\left(\frac\pi4\right)=tg\left(\frac\pi4\right)=1,\ \ g\left(\frac\pi4\right)=2tg\left(\frac\pi4\right)=2,\ \ h\left(\frac\pi4\right)=\frac12 tg\left(\frac\pi4\right)=\frac12 $$ Аналогично – для любого другого значения аргумента x.

п.3. Параллельный перенос графиков тригонометрических функций по оси OX

Общие принципы переноса по оси OX:

Эти принципы справедливы и для тригонометрических функций.
При этом параметр x называют начальной фазой колебаний.
При сравнении двух тригонометрических функций \(y_1=f(x)\) и \(y_2=f(x\pm a)\) говорят, что у второй функции сдвиг по фазе равен \(\pm a\).

1) Построим в одной системе координат три графика: $$ f(x)=sinx,\ \ g(x)=sin\left(x+\frac\pi4\right),\ \ h(x)=sin\left(x-\frac\pi4\right) $$
Функция \(g(x)=sin\left(x+\frac\pi4\right)\) сдвинута на \(\frac\pi4\) влево по сравнению с \(f(x)\)
Функция \(h(x)=sin\left(x-\frac\pi4\right)\) сдвинута на \(\frac\pi4\) вправо по сравнению с \(f(x)\)

п.4. Параллельный перенос графиков тригонометрических функций по оси OY

Общие принципы переноса по оси OY:

Эти принципы справедливы и для тригонометрических функций.

1) Построим в одной системе координат три графика: $$ f(x)=sinx,\ \ g(x)=sinx+1,\ \ h(x)=sinx-1 $$
Функция \(g(x)=sinx+1\) сдвинута на 1 вверх по сравнению c \(f(x)\)
Функция \(h(x)=sinx-1\) сдвинута на 1 вниз по сравнению с \(f(x)\)

п.5. Общее уравнение синусоиды

График \(y(x)=Acos(cx+d)+B\) также называют синусоидой. Термин «косинусоида» употребляется относительно редко.
Поскольку график косинуса получается из графика синуса сдвигом по фазе на π/2 влево, вводить термин «косинусоида» излишне.

Построим график \(g(x)=3sin\left(2x+\frac\pi2\right)-1\)
По сравнению с \(f(x)=sinx\):

  • \(A=3\) — график растянут по оси OY в 3 раза
  • \(c=2\) — период меньше в 2 раза T=π, график сжат в 2 раза по оси OX
  • \(d=\frac\pi2\) – начальная фаза положительная, график сдвинут на \(\frac<\pi><2\cdot 2>=\frac\pi4\) влево
  • \(B=-1\) — график сдвинут по оси OY на 1 вниз

п.6. Общее уравнение тангенцоиды

График \(y(x)=Actg(cx+d)+B\) также называют тангенцоидой.

Построим график \(g(x)=\frac12 tg\left(\frac<2>-\frac\pi3\right)+1\)
По сравнению с \(f(x)=tgx\):

  • \(A=\frac12\) — график сжат по оси OY в 2 раза
  • \(c=\frac12\) — период больше в 2 раза T=2π, расстояние между асимптотами 2π, график растянут в 2 раза по оси OX
  • \(d=-\frac\pi3\) – начальная фаза отрицательная, график сдвинут на \(\frac<\pi><3\cdot 1/2>=\frac<2\pi><4>\) вправо
  • \(B=1\) — график сдвинут по оси OY на 1 вверх

п.7. Примеры

Пример 1. Постройте в одной системе координат графики: $$ f(x)=sinx,\ \ g(x)=-sinx,\ \ h(x)=cosx $$ Найдите сдвиг по фазе для \(g(x)\) и \(h(x)\) в сравнении с \(f(x)\).

Сдвиг по фазе удобно определять по главной арке синусоиды.
Для \(f(x)=sin⁡x\) главная арка определена на отрезке \(0\leq x\leq \pi\)
Для \(g(x)=-sin⁡x\) главная арка определена на отрезке \(-\pi\leq x\leq 0\), т.е. сдвинута на π влево от \(f(x)\). Это означает, что: $$ f(x)=g(x+\pi),\ \ sin⁡x=-sin⁡(x+\pi) $$ Для \(h(x)=cos⁡x\) главная арка определена на отрезке \(-\frac\pi2\leq x\leq \frac\pi2\), т.е. сдвинута на \(\frac\pi2\) влево от \(f(x)\). Это означает, что: $$ f(x)=h\left(x+\frac\pi2\right),\ \ sinx=cos\left(x+\frac\pi2\right) $$

Пример 2. Найдите наименьшие положительные периоды функций:
a) \(y=sin5x\)
Период синуса \(2\pi\) уменьшается в 5 раз. Получаем: \(T=\frac<2\pi><5>\)

б) \(y=cos\pi x\)
Период косинуса \(2\pi\) уменьшается в \(\pi\) раз. Получаем: \(T=\frac<2\pi><\pi>=2\)

в) \(y=tg\frac<4>\)
Период тангенса \(\pi\) увеличивается в 4 раза. Получаем: \(T=4\pi\)

г) \(y=tg\left(2x+\frac<\pi><3>\right)\)
Период тангенса \(\pi\) уменьшается в 2 раза. Получаем: \(T=\frac\pi2\)

Пример 3. Используя правила преобразования графиков функций, постройте график $$ f(x)=2ctg\left(3x+\frac\pi6\right) $$ По сравнению с \(g(x)=tg⁡x\):

  • \(A=2\) — график растянут по оси OY в 2 раза
  • \(c=3\) — период меньше в 3 раза \(T=\frac\pi3\), расстояние между асимптотами \(\frac\pi3\), график сжат в 3 раза по оси OX
  • \(d=-\frac\pi6\) – начальная фаза положительная, график сдвинут на \(\frac<\pi><6\cdot 3>=\frac<\pi><18>\) влево

Расположение нулей: $$ tg\left(3x+\frac\pi6\right)=0\Rightarrow 3x+\frac\pi6=\pi k\Rightarrow 3x=-\frac\pi6+\pi k\Rightarrow x =-\frac<\pi><18>+\frac<\pi k> <3>$$ Вертикального сдвига нет, нули расположены на оси OX.
Расположение асимптот: $$ 3x+\frac\pi6\ne\frac\pi2+\pi k\Rightarrow 3x\ne\frac\pi3+\pi k\Rightarrow x\ne\frac\pi9+\frac<\pi k> <3>$$ Пересечение главной ветви с осью OY: \(x=0,\ y=2tg\frac\pi6=\frac<2><\sqrt<3>>\)
С учетом периода \(\frac\pi3\) получаем семейство дополнительных точек для построения графика \(\left(\frac<\pi k><3>; \frac<2><\sqrt<3>>\right)\).

Пример 4. Определите графически, сколько корней имеет уравнение на отрезке: a) \(sinx=sin2x\) при \(0\leq x\leq 3\pi\)

Ответ: 7 корней

б) \(cos\frac<2>=cos2x\) при \(-2\pi\leq x\leq 2\pi\)

Ответ: 7 корней


источники:

http://100urokov.ru/predmety/urok-2-funkcii-trigonometricheskie

http://reshator.com/sprav/algebra/10-11-klass/preobrazovaniya-grafikov-trigonometricheskih-funkcij/