Уравнение sinx a имеет корни

Арксинус. Решение уравнения sin x = a

п.1. Понятие арксинуса

В записи \(y=sinx\) аргумент x — это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если \(sinx=1\), то \(x=\frac\pi2+2\pi k,\ k\in\mathbb\); если \(sinx=0\), то \(x=\pi k,\ k\in\mathbb\) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: \(-\frac\pi2 \leq x\leq \frac\pi2\) (правая половина числовой окружности).

\(arcsin\frac12=\frac\pi6,\ \ arcsin\left(-\frac<\sqrt<3>><2>\right)=-\frac<\pi><3>\)
\(arcsin2\) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arcsinx


1. Область определения \(-1\leq x\leq1\) .
2. Функция ограничена сверху и снизу \(-\frac\pi2\leq arcsinx\leq \frac\pi2\) . Область значений \(y\in[-\frac\pi2; \frac\pi2]\)
3. Максимальное значение \(y_=\frac\pi2\) достигается в точке x=1
Минимальное значение \(y_=-\frac\pi2\) достигается в точке x =-1
4. Функция возрастает на области определения.
5. Функция непрерывна на области определения.
6. Функция нечётная: \(arcsin(-x)=-arcsin(x)\) .

п.3. Уравнение sin⁡x=a

Значениями арксинуса могут быть только углы от \(-\frac\pi2\) до \(\frac\pi2\) (от -90° до 90°). А как выразить другие углы через арксинус?

Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса.

1) Решим уравнение \(sinx=\frac12\).
Найдем точку \(\frac12\) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам \(\frac\pi6\) и \(\frac<5\pi><6>\) — это базовые корни.
Если взять корень справа \(\frac\pi6\) и прибавить к нему полный оборот \(\frac\pi6+2\pi=\frac<13\pi><6>\), синус полученного угла \(sin\frac<13\pi><6>=\frac12\), т.е. \(\frac<13\pi><6>\) также является корнем уравнения. Корнями будут и все другие углы вида \(\frac\pi6+2\pi k\) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида \(\frac<5\pi><6>+2\pi k\).
Получаем ответ: \(x_1=\frac\pi6+2\pi k\) и \(x_2=\frac<5\pi><6>+2\pi k\)
Заметим, что \(arcsin\frac12=\frac\pi6\). Полученный ответ является записью вида
\(x_1=arcsin\frac12+2\pi k\) и \(x_2=\pi-arcsin\frac12+2\pi k\)
А т.к. арксинус для \(\frac12\) точно известен и равен \(\frac\pi6\), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.

2) Решим уравнение \(sinx=0,8\)

Найдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению правая точка – это угол, равный arcsin0,8.
Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
\(x_1=arcsin0,8+2\pi k,\)
\(x_2=\pi-arcsin0,8+2\pi k\)

Докажем, что семейства решений для корней справа и слева можно записать одним выражением \(x=(-1)^k arcsina+\pi k\).
Действительно, для чётных \(k=2n\) получаем: $$ x=(-1)^ <2n>arcsina+\pi \cdot 2n=arcsina+2\pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
Для нечётных \(k=2n+1\):
$$ x=(-1)^ <2n+1>arcsina+\pi \cdot (2n+1)=-arcsina+2\pi n +\pi=\pi-arcsina+2\pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
Обратное преобразование двух семейств решений в общую запись аналогично.
Следовательно: $$ x=(-1)^k arcsina+\pi k\Leftrightarrow \left[ \begin x=arcsina+2\pi n\\ x=\pi-arcsina+2\pi n \end \right. $$ Что и требовалось доказать.

Для примеров, решённых выше, можем записать: $$ 1) \left[ \begin x_1=\frac\pi6+2\pi k\\ x_2=\frac<5\pi><6>+2\pi k \end \right. \Leftrightarrow x=(-1)^k\frac\pi6 +\pi k $$
$$ 2) \left[ \begin x_1=arcsin0,8+2\pi k\\ x_2=\pi-arcsin0,8+2\pi k \end \right. \Leftrightarrow x=(-1)^karcsin0,8 +\pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
Если же просто нужно записать ответ, то пишут общее выражение.

п.4. Примеры

Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.

Для \(y=arcsinx\) область определения \(-1\leq x\leq 1\), область значений \(-\frac\pi2\leq y\leq \frac\pi2\).
Обратная функция \(y=sinx\) должна иметь ограниченную область определения \(-\frac\pi2\leq x\leq \frac\pi2\) и область значений \(-1\leq y\leq 1\).
Строим графики:

Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) \(sin x=-1\)

\(x=-\frac\pi2+2\pi k\)
б) \(sin x=\frac<\sqrt<2>><2>\)

$$ \left[ \begin x_1=\frac\pi4+2\pi k\\ x_2=\frac<3\pi><4>+2\pi k \end \right. \Leftrightarrow x=(-1)^\frac<\pi> <4>+\pi k $$
в) \(sin x=0\)

\(x=\pi k\)
г) \(sin x=\sqrt<2>\)

\(\sqrt<2>\gt 1,\ \ x\in\varnothing\)
Решений нет
д) \(sin x=0,7\)

\begin \left[ \begin x_1=arcsin(0,7)+2\pi k\\ x_2=\pi-arcsin(0,7)+2\pi k \end \right. \Leftrightarrow\\ \Leftrightarrow\ x=(-1)^k arcsin(0,7) +\pi k \end
e) \(sin x=-0,2\)

Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: \begin \left[ \begin x_1=-arcsin(0,2)+2\pi k\\ x_2=\pi+arcsin(0,7)+2\pi k \end \right. \Leftrightarrow\\ \Leftrightarrow x=(-1)^arcsin(0,2) +\pi k \end

Пример 3. Запишите в порядке возрастания: $$ arcsin0,2;\ \ arcsin(-0,7);\ \ arcsin\frac\pi4 $$

Способ 1. Решение с помощью числовой окружности

Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; \(\frac\pi4\approx 0,79\)
Значения синусов (углы) считываются на правой половине окружности: чем больше синус (от -1 до 1), тем больше угол (от \(-\frac\pi2\) до \(\frac\pi2\)).
Получаем: $$ arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4 $$Способ 2. Решение с помощью графика \(y=arcsinx\)

Отмечаем на оси OY аргументы 0,2; -0,7; \(\frac\pi4\approx 0,79\). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4 $$Способ 3. Аналитический
Арксинус – функция возрастающая: чем больше аргумент, тем больше функция.
Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; \(\frac\pi4\).
И записываем арксинусы по возрастанию: \(arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4\)

Пример 4*. Решите уравнения:
\(a)\ arcsin(x^2-3x+3)=\frac\pi2\) \begin x^2-3x+3=sin\frac\pi2=1\\ x^2-3x+2=0\\ (x-2)(x-1)=0\\ x_1=1,\ x_2=2 \end Ответ:

\(б)\ arcsin^2x-arcsinx-2=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arcsin x,\ -\frac\pi2\leq t\leq \frac\pi2\)
Решаем квадратное уравнение: $$ t^2-t-2=0\Rightarrow (t-2)(t+1)=0\Rightarrow \left[ \begin t_1=2\gt \frac\pi2 — \text<не подходит>\\ t_2=-1 \end \right. $$ Возвращаемся к исходной переменной: \begin arcsinx=-1\\ x=sin(-1)=-sin1 \end Ответ: -sin1

\(в)\ arcsin^2x-\pi arcsinx+\frac<2\pi^2><9>=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arcsin x,\ -\frac\pi2\leq t\leq \frac\pi2\)
Решаем квадратное уравнение: \begin t^2-\pi t+\frac<2\pi^2><9>=0\\ D=(-\pi)^2-4\cdot \frac<2\pi^2><9>=\frac<\pi^2><9>,\ \ \sqrt=\frac\pi3 \Rightarrow \left[ \begin t_1=\frac<\pi-\frac\pi3><2>=\frac\pi3\\ t_2=\frac<\pi+\frac\pi3><2>=\frac<2\pi><3>\gt \frac\pi2 — \text <не подходит>\end \right. \end Возвращаемся к исходной переменной:
\begin arcsinx=\frac\pi3\\ x=sin\frac\pi3=\frac<\sqrt<3>> <2>\end Ответ: \(\frac<\sqrt<3>><2>\)

Как репетитор по математике поясняет формулу корней уравнения SinX=a

Известно, что большинство школьных учебников по математике далеко от методического совершенства, к которому так стремятся их авторы. На мой взгляд, многие из них предлагают туманные или совсем точные объяснения сложных теоретических вопросов. Обычно, если репетитор по математике в совершенстве владеет искусством объяснений, то либо меняет логику учебника полностью, либо дополняет тексты адаптированными для детского восприятия комментариями. Я уже давно пересмотрел подходы к изучению многих тем школьной программы по математике, являющиеся классическими. Невнятная логика переходов от одного факта к другому (от формулы к формуле), сухая схематичность выкладок и обилие математических терминов, — далеко не полный список проблем в построении классических объяснений.

Можно ли как-то исправить недосмотры и переписать учебники с учетом этих замечаний? Думаю, что нельзя. Почему? Если аккуратно подходить к каждому проблемному участку и менять «скупую математику» на «живую» и понятную, то размеры учебников возрастут в несколько раз. Почему? Очень трудно передать коротко те мысли, которые помогают прояснить сложные математические процессы. На некоторые из них придется потратить по 0,5-1,5 страниц печатного текста. Если так править каждый параграф, то и без того увесистые портфели учеников можно будет использовать для занятий тяжелой атлетикой.

Поэтому репетитор по математике как всегда «принимает огонь на себя». Отмечу, что индивидуальные занятия с преподавателем создают наилучшие условия для проникновения в глубины предмета, ибо в переполненном классе сложнее настроить ученика на серьезную вдумчивую работую. Репетитору же, как правило, удается донести до его сознания разного рода тонкости.

Толковое подробное объяснение сложного вопроса может отнять весь урок. И даже это не гарантирует 100%-го понимания темы всеми учащимися. Очень трудно удерживать внимание целой аудитории на детальном рассмотрении важных «мелочей». Особенно если оно долгое. Отдельно взятый ученик может в любой момент отвлечься от доски и полностью выключится из процесса. Преподаватель замеввший его потерянный взгляд и повторяющий часть объяснения заново, рискует запутает других учеников, ибо теряется последовательность изложения логических выводов. Сильному ученику станет скучно и он, скорее всего, потеряет концентрацию.

Неравномерность скорости восприятия информации (даже в классе с приблизительно равным уровнем знаний и способностей) делает аккуратные объяснения тем малоэффективными. Поэтому и здесь индивидуальный репетитор по математике оказывается в более выгодных условиях по сравнению со школьным преподавателем. В тихой и спокойной обстановке при полном контроле за пониманием и вниманием ученика репетитору удается объяснить теорему так, как это не удается сделать в классе.

Какую коррекцию проводит репетитор по математике?

Предлагаю вашему вниманию пример одного из моих объяснений при работе с темой «решение простейших тригонометрических уравнений». Напомню, что подготовка к ЕГЭ по математике включает в себя разбор формул для понимания решений задач типа С1. Что предлагает нам базовый учебник математики А.Н. Колмогорова 10-11 класс? Откроем пункт №9.2, стр.72 (17-е издание). В нем описывается построение формулы корней уравнения вида . Сделан рисунок круга и даны вполне нормальные объяснения формулам для левой и правой точек – концов соответствующей хорды.
где
Далее следует текст (цитирую): Удобно эти решения уравнения записывать не двумя, а одной формулой:
Нетрудно убедиться, что при четных k=2n из формулы (6) находим все решения, записанные формулой (4), а при нечетных k=2n+1 – решения, записываемые формулой (5).

Ну как Вам, понятно? Можно ли считать переход доказанным? Достаточно ли репетитору по математике повторить этот текст на уроке? Думаю, что нет. И вряд ли поможет прямая подстановка выражений 2n и 2n+1, ибо она точного доказательства не даст. Меня всегда возмущала тактика ухода от рассмотрения тонких вопросов. Как только автор с ним сталкивается, он сразу же прибегает к фразе «нетрудно убедиться» или «нетрудно доказать». Давайте разберемся, что именно здесь требуется вообще доказать и какие пояснения репетитору по математике следует предоставить ученику.

Пояснения репетитора к выводу формулы

Лучше строить рассуждения от обратного. Не подставлять 2n и 2n+1, а выделять их в 4-ой и 5-ой формулах. Некоторым ученикам 10 класса репетитор по математике должен объяснить принцип работы самих формул: для каждого целого числа, подставленного вместо буквы n (я использую всегда самые доступные фразы и термины) каждая формула вычисляет соответствующий ему угол. Подставляя в n все целые знания можно вычислить все множество углов (корней уравнения). Естественно, что запись формул может быть совершенно произвольной, когда множество сохраняется. Если замена на 6-ю формулу не приведет ни к потере, ни к приобретению лишних углов, то эта замена будет корректной. Согласно всем математическим правилам репетитору требуется просто показать совпадение множеств. Как это сделать? Лучше всего подготовить (преобразовать) формулы (4) и (5) к виду, максимально близкому к виду (6).

Понятно, что если вместо коэффициента «единица» перед арксинусом в формуле (4) поставить степень , то это не изменит результата при вычислении каждого угла, поскольку 2n – четно. В пятой формуле репетитор по математике переставляет слагаемое в конец выражения и выносит его за скобку. Это тождественное преобразование, также не меняющее результата при любом n. Затем вместо коэффициента -1 перед вторым арксинусом репетитор вставляет степень . И в этом случае результат сохранится, ибо при любом целом n значение 2n+1 будет нечетным, а при возведении 2n+1 в нечетную степень получим ту же самую «минус единицу».

Итак, репетитор по математике преобразует формулы к следующему виду:

Множители в последнем слагаемом специально переставляются, дабы обеспечить максимально точное расположение выражений 2n и 2n+1 для формулы (6) к моменту из замены на k. Лучше всего их выделить разным цветом.

Далее – самое важное. Текст репетитора (дословно):
Докажем, что каждый угол, вычисляемый по (4) формуле, можно вычислить по формуле (6). Почему? Допустим, в формулу (4) вставилось какое-нибудь целое число, например n=7. Тогда в зеленой рамке получится 14. Если вставить 14 вместо переменной k в формулу (6), то получим те же действия, что и в (4) и, следовательно, совпадут результаты. Очевидность этого совпадения обеспечивает максимально близкий вид 4-ой формулы к 6-ой. Поэтому ни один угол формулы (4) не будет потерян. Аналогичные рассуждения репетитор по математике проводит с формулой (5). Итак, мы гарантируем, что все углы формул (4) и (5) можно вычислить по формуле (6).

И наоборот, любой угол формулы (6) можно получить или по (4) или по (5). Почему? Допустим, что при каком-нибудь значении мы нашли угол по (6). Если k – четно, например k=10, то вставляя в 4-ю формулу n=5, мы вычислим тот же угол. Если k — нечетно, например (и здесь репетитору по математике лучше использовать примеры с конкретными значениями n), то подставляя n=6 в (5) снова увидим повторение набора действий и, как следствие, ответа. И так для любого числа k. Поэтому ни один угол формулы (6) не будет посторонним а оба множества (4)+(5) и (6) совпадут.

Если проводится подготовка к ЕГЭ по математике, то репетитору следует помнить о том, что в С1 наибольшую частоту появления имеют задачи на отбор корней. В этом случае общая формула, о которой идет речь в статье, не используется вовсе. Абитуриент отмечает точки на круге, удовлетворяющие условию SinX=a, отсекает лишнюю и только после этого записывает ответ. Думаю, что в условиях экспресс подготовки к ЕГЭ по математике не стоит тратить время на отработку навыков работы с «минус единицей в степени эн» и ограничиться сериями (4) и (5). Если абитуриент на ЕГЭ запишет ответ в С1 отдельными формулами, вместо общей, то это не приведет к снижению оценки (балла) за все задание.

Колпаков А.Н. Репетитор по математике Москва. Автор подхода.

Разумно, но какие-такие «математические правила» не убеждают, что общая формула есть объединение для четных и нечетных и наоборот? И уж очень длинное обсуждение совершенно очевидного факта!
А честно «доказать», что (-1)*(-1)=1, учителя и большинство репетиторов не сумеют, да еще будут отмазываться тупым возражением — «по определению»…

Речь шла о самых обычных правилах доказательства совпадения двух множеств. А совпадает с В, если любой элемент из А лежит в В и, наоборот, любой элемент из В лежит в А. Теперь по поводу очевидности. Надо понимать, что очевидный для репетитора (или для сильного десятиклассника) факт, далеко всегда очевиден слабому ученику, о подаче материала которому как раз и идет речь в статье. По уму — вообще вся школьная математика состоит из «совершенно очевидных фактов». Только почему-то дети воспринимают их по-разному. Рад за то, что Ва очевидны формулы. Но это Вам очевидно. А другому человеку? Репетитор должен уметь смотреть на математику глазами школьника, моделируя у себя в голове его мысли. Математик и репетитор — несколько разные профессии. Вы смотрите на триг. формулы глазами математика, а мне приходится смотреть на них глазами репетитора. Методика — это наука о том, как добиться наилучших результатов в понимании и закреплении материала большей части класса, в которой, как правило, процент сильных детей невысок. На практике репетитору довольно часто приходится разжевывать простейшее, иначе не добиться понимания фактов у определенной категории учащихся.

Мне кажется ученикам не понятно когда в ходе объяснения используется числовая окружность, не проще использовать график функции. А если кто-то не понимает что за корень с -1 в степени н, то можно просто ответ записывать в виде двух корней. Потом поймут что это одно и то же.

Во-первых, на графике не видна причина периодичности синуса и косинуса. Слишком он оторван от определения, которое формулируется на координатах ТОЧЕК КРУГА. Во-вторых, репетитору по математике будет сложнее объяснить и, соответственно, научить использовать длину периода. В-третьих, на графике практически невозможно показывать пересечения корней разных уравнений (если это потребуется). Его преимущество состоит только в лучшей демонстрации бесконечности множества корней изучаемых уравнений.

Уравнение. Простейшее тригонометрическое уравнение sin х = а.

Существует возможность отобразить всякий корень уравнения sin х = а, как абсциссу некой точки пересечения синусоиды у =sinх и прямой у = а, и, соответственно верно обратное, абсцисса всякой такой точки пересечения выступает одним из корней уравнения.

При | а| >1 синусоида у = sin х не пересечется с прямой у = а. В данном случае у уравнения нет корней.

При а = 0 у уравнение sin x = а будут корни:

где m изменяется по всем целым числам (m = 0, ±1, ±2, ±3, . ).

Несомненно, arcsin0 = 0 и соответственно получаем (-1) m arcsin 0 + mπ = mπ.

При а = 1, корни уравнения определяются по формуле:

где k изменяется по всем целым числам (k = 0, ±1, ±2, ±3, . ).

Для обоснования формулы выполним подстановку: а = 1 в формулу:

(-1) m arcsin0+ mπ = mπ и принимая к сведению, что arcsin 1= π /2, имеем: (- 1) m arcsin 1 + mπ= (- 1) mπ /2 + mπ.

где k изменяется по всем целым числам (k = 0, ±1, ±2, ±3, . . .).

Необходимо учитывать, что все вышеуказанные формулы можно применять в том случае, когда искомый угол х представлен в радианах. Когда х представлен в градусах, то эти формулы нужно преобразовать.

К примеру, вместо формулы (-1) m arcsin 0 + mπ = mπ необходимо применять формулу х= (-1) m arcsinа + 180m, вместо формулы х = mπ — формулу х= 180 m и т. д.


источники:

http://ankolpakov.ru/kak-repetitor-po-matematike-poyasnyaet-formulu-kornej-uravneniya-sinxa/

http://www.calc.ru/Prosteysheye-Trigonometricheskoye-Uravneniye-Sin-Kh-A.html