Уравнение системы с обратной связью

Уравнения цифровой системы с обратной связью.

Уравнениями цифровой системы с обратной связью называют линейные разностные уравнения, связывающие управляемую y[i]и управляющую u[i] последовательности с внешними последовательностями — задающей V[i], возмущающей f[i] и шума измерений s[i]. Для получения таких уравнений удобно воспользоваться структурной схемой, приведенной на рис. 23.

Так как представленная на этом рисунке схема соответствует линейной системе, для которой справедлив принцип суперпозиции, то Z-изображение управляемой последовательности можно найти как сумму Z-изображений реакций системы на каждую из внешних последовательностей в отдельности. При этом, учитывая определения основных передаточных функций цифровой системы с обратной связью, т.е. принимая во внимание выражения (67-68, 71-74), получаем

, (76)

, (77)

Передаточные функций прямой и обратной связи, дискретная передаточная функция объекта управления , как соответствующие дискретным фильтрам, представляют собой отношение многочленов от z:

, , . (78)

Знаменатели передаточных функций и при формировании закона управления выбираются одинаковыми, что позволяет упростить процедуру синтеза.

Подставляя (78) в (67),(68) и (71-74), находим передаточные функции замкнутой системы также в виде отношения многочленов:

, , , (79)

, ,

,

представляет собой характеристический многочлен цифровой системы управления с обратной связью.

Для системы n-го порядка этот многочлен можно преобразовать к виду

, (80)

где al, — постоянные коэффициенты.

Как видим, сигналы в системе с прямой и обратной связью (с двумя степенями свободы) характеризуются шестью передаточными функциями (иногда называемыми «бандой шести»).

Особого внимания заслуживают функция чувствительности и дополнительная функция чувствительности.

Система с единичной обратной связью (с одной степенью свободы) описывается четырьмя передаточными функциями (банда четырех).

Подставляя (79) в (80)и умножая затем левую и правую части полученного выражения Д * (z), находим уравнения цифровой системы с обратной связью в изображениях относительно у * (z):

. (81)

Заменяя в выражениях для многочленов z на оператор сдвига E и записывая вместо Z-изображений соответствующие последовательности, получаем уравнение цифровой системы с обратной связью в операторной форме

. (82)

При известных операторных многочленах нетрудно перейти, используя свойства оператора сдвига, к явной форме линейного разностного уравнения цифровой системы с обратной связью.

Если все внешние воздействия отсутствуют, т.е. если

,

то уравнение (81) вырождается в однородное разностное уравнение

.

2. Математическое описание систем автоматического управления ч. 2.9 — 2.13

Лекции по курсу «Управление Техническими Системами», читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки», факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.

Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.

В предыдущих сериях:

В это части будут рассмотрены:

2.9. Использование обратных преобразований Лапласа для решения уравнений динамики САР (звена).
2.10. Весовая и переходная функции звена (системы).
2.11. Определение переходного процесса в системе (САР) (звене) через весовую и переходную функции.
2.12. Mетод переменных состояния.
2.13. Переход от описания переменных «вход-выход» к переменным состояния.

Попробуем применить, полученные знания на практике, создавая и сравнивая расчетные модели в разных видах. Будет интересно познавательно и жестко.

2.9. Использование обратных преобразований Лапласа для решения уравнений динамики САР (звена)

Рассмотрим динамическое звено САР изображенное на рисунке 2.9.1

Предположим, что уравнение динамики имеет вид:

где: — постоянные времени;
— коэффициент усиления.

Пусть известны отображения:

Найдем изображения для производных:

Подставим полученные выражения в уравнение динамики и получим уравнение динамики в изображениях:

B(s) — слагаемое, которое определяется начальными условиями, при нулевых начальных условиях B(s)=0.
W(s) — передаточная функция.

Передаточной функцией САР (звена) называется отношение изображений выходного сигнала к входному воздействию при нулевых н.у.

После того, как в явном виде найдено изображение для неизвестной выходной величины, нахождение оригинала не представляет сложностей. Либо по формуле Хэвисайда, либо разложением на элементарные дроби, либо по таблице из справочника.

Пример

Построить выходной сигнал звена САР при единичном входном воздействии и нулевых начальных условиях, если уравнение динамики звена имеет следующий вид:

входное воздействие: — единичное ступенчатое воздействие.

Выполним преобразование Лапласа:

Подставим в уравнение динамики и получим уравнение динамики в изображениях:

Для получения выходного сигнала из уравнения в изображениях выполним обратное преобразования Лапласа:

2.10. Весовая и переходная функции звена (системы).

Определение: Весовой функцией звена (системы) называется реакция системы при нулевых н.у. на единичное импульсное воздействие.

Определение: Переходной функцией звена (системы) при н.у. называется реакция на единичное ступенчатое воздействие.

На этом месте можно вспомнить, что преобразование Лапласа это интеграл от 0 до бесконечности по времени (см. предыдущий текст), а импульсное воздействие при таком интегрировании превращается в 1 тогда в изображениях получаем что:

Передаточная функция играет роль изображения реакции звена или системы на единичное импульсное воздействие.

Для единичного ступенчатого воздействия преобразование Лапласа тоже известно (см. предыдущий текст):

тогда в изображениях получаем, что реакция системы на ступенчатое воздействие, рассчитывается так:

Реакция системы на единичное ступенчатое воздействие рассчитывается обратным преобразованием Лапласа:

2.11. Определение переходного процесса в системе (САР) (звене) через весовую и переходную функции. Формула Дюамеля-Карсона

Предположим, что на вход системы поступает произвольное воздействие x(t), заранее известное. Найти реакцию системы y(t), если известны входное воздействие x(t) и весовая функция w(t).

Представим, что входное воздействие представляет собой последовательность прямоугольных импульсов до времени t и ступеньки высотой x(t) в момент времени t. см.рис. 2.11 Для каждого импульса мы можем записать реакцию системы через весовую функциию:

где:
— значение отклика по завершению предыущего импульса;
— время завершения текущего импульса;
— значение весовой функции в начале текущего импульса.

Тогда для определения занчения отклика в произвольный момент времени необходимо сложить все импульсы и ступенчатое воздействие в момент времени t:

Переходя к пределам

если перейти от t к бесконечности мы получим формулу интеграла Дюамеля-Карсона, или по другому «интеграла свертки» который обеспечивает вычисление оригинала функции по произвдению изображения двух функций:

где — вспомогательное время

Для вывода аналогичной зависмости от переходной функции вспомним что изображение весовой и переходной функции связаны соотношением: запишем выражение изображения для отклика в операторной форме:

Используя интеграл свертки получаем, что при известной переходной функции (h(t)) и известному входному воздействию х(t) выходное воздействие рассчитывается как:

2.12. Mетод переменных состояния.

До этого мы рассматривали системы с одной передаточной функцией, но жизнь всегда сложнее и как правило в системах есть несколько передаточных функций несколько входных воздейстий и несколько реакций системы. (см. рис. 2.12.1)

В этом случае наиболее удобной формой пердставления систем для их анализа и расчета оказался метод переменных состояния. Для этого метода, вместо передаточных функций связывающих вход с выходом используются дополнительные переменные состояния, которые описывают систему. В этом случае можно говорить, что состояние системы — это та минимальная информация о прошлом, которая необходима для полного описания будущего поведения (т.е. выходов) системы, если поведение ее входов известно. см. рис. 2.12.2

В методе состояний, производные всех переменных состояния, в общем случае зависит от всех переменных и всех входных воздействия, и могут быть записаны в представленной ниже системы обыкновенных дифференциальных уравнений (ОДУ) первой степени. Эта система уравнений называю системой ОДУ в форме Коши:

Выход из системы зависит от переменных состояния и, в общем случае от входных воздействий и описывается следующей системой уравнений:

где:
n — количество перемнных состояния,
m — количество входных воздействий,
p — количество выходных переменных;

Данная система уравнений может быть записана в матричной форме:

где:
— вектор входа (или вектор управления);
— вектор столбец производных переменных состояния;
— вектор столбец переменных состояния;
— вектор выхода;
— собственная матрица системы [n x n],
— постоянные коэффициенты;
— матрица входа [n x m],
— постоянные коэффициенты;
— матрица выхода а [p x n],
— постоянные коэффициенты;
— матрица обхода [p x m],
— постоянные коэффициенты;

В нашем случае почти всегда все элементы матрицы D будут нулевыми: D = 0.

Такое описание системы позволяет с одной стороны стандартным образом описывать различные технические системы. Явная формула для расчета производных позволяет достаточно просто осуществлять численное интегрирование по времени. И это используется в различных программах моделирования

Другое использование данного представления для простых систем, описанных в переменных «вход-выход», зачастую позволяет устранить технические трудности, связанные с решением ОДУ высокой степени.

Еще одним преимуществом данного описания, является то, что уравнения в форме Коши можно получить из законов физики

Пример решения задачи в форме коши.

Рассмотрим задачу моделирования гидравлического привода, при следующих условиях:

Дано:
Цилиндрический плунжер диаметром 10 мм, с приведенной массой 100 кг, работает на пружину жесткостью 200 Н/мм и демпфер с коэффициентом вязкого трения — 1000 Н/(м/с). Полость начальным объемом 20 см 3 соединяется с источником давлния дросселем диаметром диаметр которого 0,2 мм. Коэффициент расхода дросселя 0.62. Плотность рабочей жидкости ρ = 850 кг/м 3 .
Определить:
Перемещение дросселя, если в источнике давление происходит скачек 200 бар. см. рис. 2.12.13

Уравенение движение плунжера:

Где: – площадь плунжера, – жесткость пружины, – коэффициент вязкого трения, p – давление в камере.

Поскольку дифференциальное движения это уравнение второго порядка, превратим его в систему из двух уравнений первого порядка, добавив новую переменную — скорость , тогда

Уравнение давления в камере, для упрощения принимаем что изменениям объема камеры из-за перемещения плунжера можно пренебречь:

Где: Q – расход в камеру, V — объем камеры.

Расход через дроссель:

Где: f– площадь дросселя, – давление в источнике, p – давление в камере.
Уравнение дросселя не линейное, по условию задачи, давление входное изменяется скачком, от 0 до 200 бар, проведем линеаризацию в окрестности точки давления 100 бар тогда:

Подставляем линеаризованную формул расхода в формулу давления:

Таким образом общая система уравнений в форме Коши, для рис 2.12.3 привода принимает вид:

Матрицы A, B, С, В для матричной формы системы уравнений принимают вид:

Проверим моделированием в SimInTech составленную модель. На рисунке 2.12.13 представлена расчетная схема содержащая три модели:
1 — «Честная» модель со всеми уравнениями без упрощений.
2 — Модель в блоке «Переменные состояние» (в матричной форме).
3 — Модель в динамическом блоке с линеаризованным дросселем.

Все условия задачи задаются как глобальные константы проекта, в главном скрипте проекта, там же расчитываются на этапе инициализации расчета, площади плунжера и проходного сечения дросселя см. рис. 2.12.5:

Рисунок 2.12.5 Глобальный скрипт проекта.

Модель на внутреннем языке программирования представлена на рис. 2.12.6. В данной модели используется описание модели в форме Коши. Так же выполняется учет изменения объема дросселя на каждом шаге расчета, за счет перемещения плунжера (Vk = V0+Ap*x.)

Рисунок 2.12.6 Скрипт расчета модели в форме Коши.

Модель в матричном форме задается с использованием глобальных констант в виде формул. (Матрица в SimInTech задается в виде последовательности из ее столбцов) см. рис. 2.12.7

Результаты расчета показывают, что модель в матричной форме и модель на скриптовом языке в форме Коши, практически полностью совпадают, это означает, что учет изменения объема полости практически не влияют на результаты. Кривые 2 и З совпадают.
Процедура линеаризация расхода через дроссель вызывает заметное отличие в результатах. 1-й график c «честной» моделью дросселя, отличается от графиков 2 и 3. (см. рис. 2.12.8)

Сравним полученные модели, с моделью созданной из библиотечных блоков SimInTech, в которых учитываются так же изменение свойств реальной рабочей жидкости — масла АМГ-10. Сама модель представлена на рис. 2.12.9, набор графиков на рисунке 2.12.10

На графиках видно, что уточненная модель отличается от предыдущих, однако погрешность модели составлят наших упрощенных моделей составляют примерно 10%, в лишь в некоторые моменты времени.

2.13. Переход от описания переменных «вход-выход» к переменным состояния и обратно

Рассмотрим несколько вариантов перехода от описания «вход-выход», к переменным состояния:

Вариант прехода зависит от правой части уравнения с переменными «вход-выход»:

2.13.1. Правая часть содержит только b0*u(t)

В этом варианте, в уравнениях в правой части отсутствуют члены с производными входной величины u(t). Пример с плунжером выше так же относится к этому варианту.

Что бы продемонстрировать технологию перехода рассмотрим следующее уровнение:

Для перехода к форме Коши ведем новые переменные:

И перепишем уравнение относительно y»'(t):

Используя эти переменные можно перейти от дифференциального уравнения 3-го прядка, к системе из 3-х уравнений первого порядка в форме Коши:

Соотвественно матрицы для матричного вида уравнений в переменных сосотяния:

2.13.2. Правая часть общего вида

Более сложный случай, когда в уравнениях есть производные от входных воздействий и уравнение в общем случае выглядит так:

Сделаем преобразования: перейдем к уравнениям динамики в изображениях:

Тогда можно представить уравнение в изображениях в виде:

Разделим уравнение в изображениях на произведение полиномов , получим:

Где: — некоторая комплексная величина (отношение двух комплексных величин). Можно считать, что отображение величины . Тогда входная величина может быть в изображениях представлена как:

Вренемся к оригиналу от изображений получим: ,
где: — дифференциальный оператор.

А это дифференциальное уравнение n-го порядка мы можем преобразовать к системе из n дифференциальных уравнений первого порядка, как это мы делали выше:

Таким образом, мы получили систему уравнение в форе Коши, относительно переменных состояния :

А регулируемую величину (выход системы) мы так же можем выразить через эти переменные, в изображениях:

Перейдем от изображения к оригиналам:

Если обозначить вектор , то мы получим уравнения переменных состояниях в матричной форме, где D = 0:

Пример:


Рисунок 2.13.1 Передаточная функция.

Имеется передаточная функция (рис. 2.13.1) в изображениях :

Необходимо преобразовать передаточную функцию к системе уравнений в форме Коши

В изображения реакция системы связана с входным воздействие соотношением:

Разделим в последнем правую и левую часть на произведения , и введем новую перменную :

Полиномы N(s) и L(s) равны:

Перейдем в последнем выражении от изображения к оригиналам и ведем новые переменные (состояния):

Переходим от уравнения третьего порядка к системе трех уравнений первого порядка:

Или в матричной форме:

Для получения второго матричного уравнения воспользуемся соотношением для новых переменных в отображениях:

Перейдем от изображений к оригиналу:

Таким образом второе уравнение матричной системы выглядит так:

Проверим в SimInTech сравнив передаточную функцию и блок переменных состояния, и убедимся, что графики совпадают см. рис. 2.13.2


Рисунок 2.13.2 Сравнение переходного процеса у блока передаточной функции и блока переменных состояния.

Учебное пособие: Замкнутые системы управления

ЗАМКНУТые СУЭП

В замкнутой СУЭП (или системе с отрицательной обратной связью) управление U(t) формируется в зависимости от отклонения управляемой переменной у(t) от задающего воздействия x(t).

Точность стабилизации координаты оценивается отклонением ее от заданного значения под действием возмущающего воздействия.

Во многих промышленных механизмах системы регулирования предназначены для стабилизации с заданной точностью скорости w и момента М электродвигателя и связанного с ним рабочего механизма при действии на систему различного рода возмущений. Одним из основных возмущающих воздействий, влияние которого должно быть скомпенсировано системой является момент статического сопротивления Мс (t) на валу ЭД.

Регулирование скорости с высокими статическими и динамическими свойствами в настоящее время проектируются с помощью одно- и многоконтурных систем с различными видами обратных связей.

В одноконтурных системах применяются следующие обратные связи: отрицательная по скорости, отрицательная или положительная по току и отрицательная по напряжению;

В двухконтурных системах — сочетание перечисленных обратных связей одноконтурных систем.

По структуре замкнутые СУЭП выполняются трех видов:

— с общим сумматором;

— с независимым регулированием параметров;

— системы подчиненного регулирования.

Система с общим сумматором

В системе для регулирования параметров используется непрерывное и задержанное (с отсечками) ОС.

Все сигналы суммируются с задающим сигналом Uз на входе усилителя У, который служит для повышения коэффициента усиления системы.

Такие системы обычно используют для регулирования одного параметра (скорости).

Настройка качеств регулирования осуществляется компромиссно для разных параметров. Независимая настройка каждого параметра невозможна.

Система с независимым регулированием

Каждому параметру соответствует свой регулятор Р1n и свой сигнал задания ( Uз1 . Uзn ) .В такой системе в каждый момент времени регулируется только один параметр. Это обеспечивает логическое переключающее устройство ЛПУ , которое подключает на вход системы выход регулятора воздействие которого в данный момент является определяющим .

Система подчиненного регулирования

Регулирование параметров осуществляется последовательно. Каждому регулирующему параметру соответствует свой регулятор . Задающий сигнал каждого последующего регулируемого параметра соответствует выходу предыдущего регулятора.

Поэтому регулирование каждой координаты подчинено регулированию предыдущей. Эта система позволяет настраивать каждый параметр отдельно начиная с внутреннего.

КОМБИНИРОВАННАЯ СУЭП (замкнуто-разомкнутая)

Управление U(t) формируется в зависимости как от отклонения e(t), так и от внешних воздействий x(t), f(t).

Комбинированные системы различают по виду используемых внешних воздействий на системы:

— с разомкнутой цепью управления по возмущающему воздействию; (рис.4)

— с разомкнутой цепью управления по задающему воздействию. (рис. 5)

Комбинированную СУЭП с разомкнутой цепью по возмущающему воздействию; применяют при действии интенсивной помехи.

Комбинированная СУЭП с разомкнутым каналом по управляющему воздействию, применяется для улучшения отработки задания. Улучшенные точность и быстродействие есть результат совместной работы грубой разомкнутой и точной замкнутой систем управления.

Проектирование САУ ЭП с заданными показателями качества

Главное требование к САУ ЭП — обеспечение заданных статических и динамических характеристик, при которых работа ЭП удовлетворяет требования техпроцесса. Основное требование к системе управления — обеспечение допустимого значения ошибки управления e(t) = х(t)-y(t) в установившихся и переходных режимах, что определяется статическими и динамическими характеристиками САУ ЭП.

Статическая характеристика замкнутой СУЭП — зависимость регулируемой переменной от основного возмущающего воздействия f1 при постоянном задающем воздействии X и при отсутствии других возмущающих воздействий. Статическая характеристика может иметь несколько участков разной формы, каждый из которых соответствует определенным структурам и параметрам системы (рис. 6).

I- участок стабилизации скорости, CУ с отрицательной обратной связью по скорости.

II- участок стабилизации момента, СУ с О.О.С. по моменту сопротивления.

Данная статическая характеристика имеет два участка I и II, каждому из которых соответствует определенная структура СУЭП.

Статизм системы определяет точность работы системы в установившемся режиме.

, где

— статизм, обусловленный задающим воздействием,

— статизм, обусловленный возмущающим воздействием,

X- заданное значение установившейся регулируемой величины,

Y1 — установившееся значение регулируемой величины, соответствующее возмущающему воздействию f1 ,

Yо — установившееся значение регулируемой величины при f1 =0.

Определим, как зависит величина Sx и Sf от параметра К — коэффициент передачи системы.

f1 = 0; eо = Х-Yo ;

f1 ¹ 0; e1 = X- Y1 ;

где

DY1 — падение значения регулируемой переменной в замкнутой системе под действием возмущения f1 (Рис. 9);

DY — падение регулируемой переменой в разомкнутой системе при действии f1 ;

Yo — значение регулируемой переменной при f1 =0 по характеристике замкнутой системы;

Y01 — значение регулируемой переменной при f1 =0 по характеристике разомкнутой системы, проходящей через точку (Y1 ;f1 ) характеристики.

Следовательно: величины Sx и Sf обратно пропорциональны величине К, а Sf , кроме этого, зависит от величины задания Х, т.е. максимален на нижнем диапазоне регулирования при Х=Хmin .

Динамическая характеристика замкнутой СУЭП отражает поведение системы в переходном процессе (п/п) пуска, торможения, регулирования скорости, наброса и сброса нагрузки, т.е. при изменении задающего или возмущающего воздействия. При исследовании системы применяют воздействие в виде скачка: x(t) = X |(t) и f1 (t) = F1 |(t), где |(t)- единичная ступенчатая функция.

Прямые показатели качества :

Быстродействие — продолжительность п/п, т.е. длительность tп/п до условно установившегося значения регулируемой переменной, когда ее отклонение не превышает a (3 ¸ 5% от установившегося значения) т.е.

От быстродействия зависят: динамическая ошибка в системе стабилизации при набросе нагрузки, точность в системах следящих и программного управления. Быстродействие системы ограничивается перегрузочной способностью двигателя, di/dt, допустимым ускорением механизма.

Перерегулирование — отклонение величины max превышения регулируемого параметра над установившемся значением к величине приращения ее установившейся величины. Обычно tдоп. £ 18 ¸ 30%, иногда tдоп. = 0 (привода подачи станков).

Число колебаний регулируемой величины за время tп/п — определяет демпфирование колебаний в системе. Обычно число колебаний не более трех для избежания резонанса в ЭП.

Для систем, работающих в режиме пуска торможения, оптимальным по быстродействию будет трапецеидальный график изменения крутящего момента ЭД (при Мс = 0). Время переходного процесса будет минимально, если п/п будет происходить при :

dМ/dt = мах доп., соответствует eдоп. (рис. );

М max доп и eдоп (допустимое ускорение) определяются перегрузочной способностью двигателя, механизма передачи, технологическими характеристиками.

Формирование требуемых переходных процессов производится за счет линейных законов изменения или формирования сложных зависимостей задания Х(t) для нескольких контуров регулирования.

Проектирование СУЭП с заданными показателями качества невозможно без анализа и исследования модели САУЭП. Моделью может быть реальное техническое устройство и абстрактное математическое описание, т.е. различают моделирование физическое и математическое. В основу физического моделирования положено изучение процессов на моделях одной физической природы с оригиналом. Математическое моделирование основано на тождественности дифференциальных уравнений, описывающих процессы в оригинале и функциональные зависимости между выходными величинами на модели. Математическое моделирование позволяет прогнозировать динамические характеристики реальной системы при свойственных ей внешних воздействиях, определить показатели качества системы и их соответствие заданию. Математическое моделирование реализуют на ЭВМ. Машинное моделирование наиболее широко применяется в форме структурного моделирования.

Математическая модель при структурном моделировании представляет собой систему дифференциальных уравнений, каждое из которых представляет элементы САУЭП: преобразователь, якорную цепь двигателя и его механическую часть, регуляторы, цепи обратных связей и другое. Составлять математическую модель удобно на основании структурной схемы для исследования динамики СУЭП. При составлении дифференциального уравнении, описывающего звено ЭП, учитываются его статические и динамические характеристики: коэффициент передачи звена, постоянные времени.

Тиристорный преобразователь в динамике представляет сложное нелинейное звено, что связано с его неполной управляемостью. Частота управления ограничена

wо = 2pfс ; fс = 50 Гц; m- число фаз. (рис. 12).

СИФУ — система импульсно-фазового управления тиристорами;

СВП — собственно вентильный преобразователь.

При безинерционном СИФУ передаточная функция ТП,

Wтп =Dе(Р)/DUу(Р)=Кп е — t р — импульсное звено чистого запаздывания; где

t- среднестатическое запаздывание: t=1/Рп fc ;

Рп — число пульсаций за период;

Импульсное звено чистого запаздывания аппроксимируется апериодическим звеном:

где

Если на входе СИФУ находится фильтр (апериодическое звено) для уменьшения помех с постоянной времени Тф , передаточная функция ТП примет вид:

Дифференциальное уравнение, описывающее зависимость между Еп и Uу ТП:

Кп — статический коэффициент передачи ТП. В зависимости от вида опорного напряжения СИФУ Кп может быть постоянной или переменной величиной. (рис. 13).

При синусоидальном опорном напряжении статическая характеристика ТП линейная, т.е. Кп = const. При пилообразном опорном напряжении статическая характеристика нелинейна. Такой ТП моделировать сложнее. Внутренне сопротивление и индуктивность силовой цепи ТП учитываются в эквивалентных параметрах якорной цепи двигателя, питаемого от ТП.

В оптимизированных замкнутых системах Тп принимают за некомпенсированную постоянную времени Тmп =(3¸20) мс.

Генератор постоянного тока

ГПТ-генератор постоянного тока;

ОВГ-обмотка возбуждения генератора;

Uг -напряжение на зажимах генератора;

Uвг -напряжение ОВГ.

Передаточная функция, описывающая генератор постоянного тока:

,

где Uг — коэффициент усиления генератора:

;

Uгн -номинальное напряжение;

Tвг — постоянная времени ОВГ,

;

Rвг ,Lвг — сопротивление и индуктивность ОВГ.

В случае использования генераторов с несколькими обмотками его постоянная времени:

Tвгi — постоянная времени i-ой обмотки.

Аналогично рассматриваются параметры других звеньев СУЭП.

Cтруктурное представление ЭП постоянного тока. Передаточные функции по управляющему и возмущающему воздействию.

Считая, что ТП-безинерционный элемент , система уравнений, описывающая ЭП имеет вид:

,

.

Коэффициенты передачи по ЭДС и моменту в системе СИ одинаковы, поэтому будем их обозначать как –КФ

,.

Запишем уравнения в операторной форме

,

,

где .

Выразим из 1-го уравнения ток ,а из 2-го -скорость, разделим 1-е уравнение на и обозначим:

,,

,

.

Получим передаточные функции между напряжением и током и между моментом и скоростью.

Рассмотрим передаточную функцию всей системы по управляющему воздействию

=.

,

— коэффициент передачи ЭП по управляющему воздействию .

Рассмотрим передаточную функцию по возмущающему воздействию

Характер переходного процесса по управляющему воздействию определяется корнями характеристического уравнения

Тм Тэ p 2 +Tм p+1=0.

— корни уравнения будут вещественными отрицательными при Тм 1. Корень уравнения положительный. Система неустойчива-4.

Разомкнутая САУ с характеристическим полиномом 2-го порядка соответствует колебательному звену. Передаточная функция замкнутой системы также колебательное звено. Корни уравнения:

; .

;

.

Из условия для разомкнутой системы получим

,

,

с ростом kkc увеличивается склонность к колебательному процессу.

Однако при любых kkc замкнутая система остается устойчивой, т.к. у обоих корней вещественная часть отрицательная.

Этот метод анализа называется корневым методом.

Согласно критерию замкнутая система устойчива если

, .

Этот критерий позволяет определить факт устойчивости: главный определитель и его диагональные миноры должны быть >0.

3. В системах высоких порядков, при большой Тос могут возникнуть колебания. Это можно исследовать по диаграмме Вышнеградского.

Из характеристического уравнения 3-го порядка определим координаты M,N.

;

1.Найквиста — позволяет судить об устойчивости замкнутой системы по АФХ разомкнутой. Соответственно передаточная функция разомкнутой системы заменяется p ® jwи строится АФХ на комплексной плоскости. Если АФХ не охватывает точку (-1; j0) то замкнутая система устойчива.

2.Михайлова – определяет устойчивость замкнутой системы. Система устойчива, если при увеличении w от Æ до ¥ конец вектора на комплексной плоскости опишет кривую, которая начинается на (+)-й части вещественной оси и последовательно обойдет против часовой стрелки n-квадратов, где n – порядок характеристического уравнения.

3.Метод вещественно-частотной характеристики и ЛАЧХ.

Методы графические и графо-аналитические (методы Башарина и Суворова), методы цифрового и аналового моделирования.

СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ С

СУММИРУЮЩИМ УСИЛИТЕЛЕМ

Упрощенная принципиальная схема регулятора w ЭП постоянного тока с отрицательной обратной связью по напряжению, току и скорости на рисунке 20.

На рисунке приняты следующие обозначения:

М- ДПТ с независимым возбуждением;

ТП- тиристорный управляемый преобразователь;

УС- сумматор-инвертор на базе УПТ с коэффициентом усиления 1;

УК- корректирующее устройство на базе УПТ;

Rш- шунт датчика тока;

Rп- делитель напряжения (датчика напряжения);

ДТ, ДН, ДС- датчики тока, напряжения, скорости (усилитель, преобразователь, фильтр).

СУЭП строятся на типовых элементах УБСР: УБСР-А (аналоговые), УБСР-Д (дискретные), УБСР-АИ, УБСР-ДИ (с интегральными составляющими в регуляторах).

В состав УБСР входят источники питания, задатчики входных сигналов, датчики измерения регулируемых параметров, усилители, корректирующие устройства КУ, гальванические развязывающие устройства; устройства защиты УЗ, устройства коммутации, устройства логики УЛ и т.д. Основной элемент аналоговой серии УБСР-АИ является УПТ (операционный усилитель) на микросхемах К553УД2 и К140УД7.

К140УД7 — операционный усилитель с внутренней коррекцией АЧХ,

коэффициент усиления — Ку =(2¸3)10 4 ;

напряжение питания — Uпит ± 15В;

входное напряжение — Uвых = 10В.

УС — операционный усилитель для суммирования задающего сигнала U3 и сигналов обратной связи: Uот , Uон , Uос .

Если R3 = Rc = Rн = Rт + Rос , коэффициент усиления равен 1.

УК- операционный усилитель, может выполнять функцию:

инвертора напряжения, если Zвх = Zос = R;

корректирующего устройства, структура и параметры которого определяются характером комплексных сопротивлений Zвх и Zoc .

В этом случае КУ может быть интегральным, дифференциальным, пропорционально- интегральным регулятором и т.п.

Датчики: для получения сигналов обратных связей.

Основные четыре вида датчиков: скорости, напряжения, тока и положения. Датчики момента, усилия, мощности получают путем соответствующей обработки сигналов датчиков тока и напряжения.

Датчики скорости : аналоговые и дискретные.

Аналоговые — тахогенераторы постоянного тока (серии ПТ) и переменного тока (серии ТТ).

Дискретные — модуляция источника света на фотоприемник.

Датчики тока и напряжения должны обеспечить гальваническую развязку сигнала обратной связи от силовой цепи. Датчики системы УБСР обеспечивают гальваническую развязку до 1000В, а датчики тока и магнитного потока, использующие эффект Холла — несколько тысяч вольт. Сигнал на ДТ снимается с шунта или трансформатора тока, на ДН- с делителя напряжения. Сигнал усиливается, выпрямляется (после демодуляции в устройстве гальванической развязки) и фильтруется (RС- фильтр).

Пример датчиков тока и напряжения производства ХЭМЗ:

ДТ- ЗАИ и ДН- 2АИ.

ДТ подключается к шунту, сигнал гальванически развязан, Uвых=±10В; Кус=35- 135 погрешность менее 1%; на выходе RС фильтр с постоянной времени tф = 2мс.

1) Бесконтактные сельсинные командоаппараты с ручным приводом — для ввода задания.

Тип СКАЗ- 41, Uпит = 110В, f=50Гц, Uвых снимается с роторной обмотки; угол a=±60 о .

2) Задатчик скорости — для систем автоматического регулирования скорости.

Блоки задания скорости : БЗС — на базе б/к сельсина БД- 404, связано с исполнительным двигателем РД- 09. Угол поворота задается микровыключателями.

БЕШД — б/к сельсин с приводом от шагового двигателя через редуктор.

БСР — задатчик скорости реостатного типа с приводом от РД-09 через редуктор. Интенсивность роста задающего напряжения задается заменяемым редуктором с различными коэффициентами передачи. На выходе сельсинов устанавливается фазочувствительный усилитель ФВ-1АИ с Uвых =±10В.

Регуляторы в системе неподчиненного регулирования строятся на базе ОУ, которые имеют специальные свойства:

-выход усилителя инверсный по отношению ко входу.

-ОУ может и должен работать в условиях действия глубоких ОС, вплоть до закорачивания вход/выход.

.

выходной сигнал — импульс ¥ амплитуды и Æ длительности.

Является источником высокочастотной помехи.

где Кп — коэффициент усиления пропорциональной части ПИ-регулятора;

Ти — постоянная времени интегральной части;

.

Передаточная функция звена будет иметь вид:

.

— апериодическое звено;

.

Реализация сложных регуляторов по их передаточным функциям.

Сложный регулятор — регулятор, который не может быть реализован на одном ОУ.

Регулятор скорости с отрицательной обратной связью по скорости

Рассмотрим статические и динамические характеристики регуляторов скорости с различными видами обратных связей. При этом понимаем, что все элементы , образующие систему , являются линейными стационарными .

Структурная схема системы регулирования скорости с обратной связью по скорости представлена на рис.10-3

На структурной схеме (Рис.10-3.) приняты следующие обозначения:

R(Р)- передаточная функция регулятора;

— датчик скорости;

Тс — постоянная времени фильтра;

Kc — коэффициент передачи обратной связи по скорости;

Kп , Тп — коэффициент усиления и постоянная времени тиристорного преобразователя;

Тэ , Тм — электромагнитная и электромеханическая постоянная времени двигателя;

;

Rэ и Lэ — эквивалентные сопротивления и индуктивность якорной цепи;

1/Кд =C- внутренняя отрицательная обратная связь по ЭДС двигателя,

C- постоянная двигателя при Ф=const. C=кф;

J-момент инерции двигателя с рабочей машиной.

Статический регулятор скорости

Регулятор пропорционального типа с коэффициентом передачи Кр .

Определение статических характеристик:

w=f(U3 ); w=f(I ), т.е. зависимости скорости от задающего и возмущающего воздействия.

Преобразуем структурную схему: вынесем возмущение Iст из замкнутого контура, затем преобразуем замкнутый контур двигателя в динамическое звено без обратной связи (Рис. 10-4.).

Положив в полученной схеме р=0,что соответствует установившемуся режиму получим :

где К=Кр ×Кп ×Кс ×Кд — коэффициент усиления разомкнутой системы;

В разомкнутой системе :

На рис. представлены статические характеристики

а) при IС =0;

в) при.

Т.к. в прямой цепи замкнутого контура системы нет идеального интегрирующего звена, рассматриваемая система является статической как по возмущающему (Iс ), так и по управляющему (U3 ) воздействиям и имеет статические ошибки по этим воздействиям.

Определим статическую ошибку по возмущающему воздействию Iс . т.е. выражение для DwI совпадает с величиной падения скорости в замкнутой системе.

Рисунок 10-6- статическая характеристика DwI = f(Ic).

Характеристика построена для w03 =const для различных коэффициентов усиления К2>К1>0.

Статическая ошибка по возмущающему воздействию прямо пропорциональна величине нагрузки, характеризуемой Iс, и обратно пропорциональна коэффициенту усиления К.

Статическая ошибка по управляющему воздействию U3

U — статическая ошибка по управляющему воздействию замкнутой системы при Iс = 0,

DUe I — приращение статической ошибки, обусловленное Iс .

DUe увеличивается с возрастанием нагрузки Iс Рис. 10-7.

для оценки влияния отрицательной обратной связи по скорости, типа и параметров регулятора на свойства регулятора скорости сравним передаточные функции (п.ф.) разомкнутых и замкнутых систем регулирования W.

Примем Тс и Тп равными 0 ввиду их малости по сравнению с Тэ и Тм . Передаточная функция системы по управляющему воздействию:

.

Линейная стационарная система второго порядка всегда устойчива. Предельный коэффициент усиления Кпр = ¥. Качество переходного процесса полностью определяется относительным коэффициентом демпфирования x и собственной частотой колебания Wо (при x = 0).

Собственная частота Wо характеризует быстродействие системы; чем больше Wо , тем быстрее затухает переходной процесс.

Для разомкнутой системы :

При x 1- переходной процесс апериодический.

При x=0- незатухающие гармонические колебания.

Передаточная функция замкнутой системы по управляющему воздействию

Для замкнутой системы:

То есть, жесткая отрицательная обратная связь по скорости увеличивает Wо и уменьшает x3 в раз. Значит с ростом К возрастает скорость затухания и уменьшается колебательность (перерегулирование) переходного процесса. Жесткая отрицательная обратная связь по w улучшает устойчивость, т.к. уменьшается Тм и Тэ Тм в (1+К) раз. Аналогично исследуются переходные процессы, обусловленные действием нагрузки в виде ударного приложения Мс (или Iс = Кд Мс ) к валу двигателя.

Переходная функция замкнутой системы по возмущающему воздействию:

где Iд , Mд — динамические ток и момент.

Если Р=0 (установившийся режим) Iд = Iс ;

Мдс .

На кривых переходного процесса w = f(t) и

Мд = f(t) (Рис. 10-8.) наибольшее отклонение скорости Dwдин от ее начального значения называют динамическим падением скорости, а статическую ошибку DwI — статическим падением скорости.

Отклонение характеризует перерегулирование по скорости, а отношение DМд /DМ дуст — по моменту.

АСТАТИЧЕСКИЙ РЕГУЛЯТОР СКОРОСТИ

Рассмотрим характеристики САР скорости с ПИ- регулятором. Структурная схема аналогична рассмотренной ранее для статического регулятора скорости,передаточная функция регулятора:

Передаточные функции разомкнутых и замкнутых систем по управляющему воздействию.

где Кvп Кд Кс /tо — коэффициент усиления разомкнутой системы по w.

Из структурной схемы и передаточной функции следует, что регулятор скорости является астатической системой с астатизмом первого порядка, как по управляющему, так и по возмущающему Iс воздействиям. Следовательно: статические ошибки DwI и DUe равны нулю, однако устойчивость системы ухудшается, т.к. интегратор вносит фазовый сдвиг в замкнутый контур- 90 о на всех частотах. Это так же следует из выражения для предельного коэффициента системы.

т.е. Кvпр имеет предельное значение. Оптимальное значение постоянной времени регулятора с точки зрения устойчивости tRотп = Тэ . В этом случае Кvпр = ¥.

Регулятор скорости с отрицательной обратной связь по току.

На рис представлена структурная схема САР с обратной связь по току.

Кт — коэффициент передачи ОС по току;

Тт — постоянная времени фильтра/

Преобразуем структурную схему на рис к виду рис

Учитывая, что в статическом режиме р=0, Iд = Iс

,

(+)- при положительной обратной связи по току.

(-)- при отрицательной обратной связи по току.

Скорость идеального холостого хода в замкнутой и разомкнутой системах одинакова.

,

где Dwр = Iс Rэ Кд — падение скорости в разомкнутой системе.

На рис приведены статические характеристики w=f(I) для положительной а) ,

и для отрицательной б) ОС при Uз = const

Кт =0соответствует характеристике разомкнутой системы

При положительной обратной связи по току возможны три режима работы ЭП :

когда

В этом случае с ростом нагрузки скорость w уменьшается.

режим полной компенсации:

и Dw3 = 0,

т.е. с изменением нагрузки w = const,

с ростом нагрузки скорость возрастает. Указанные режимы могут иметь место при Кт = const и при изменении Кр

При отрицательной обратной связи по току всегда, падение скорости под нагрузкой больше, чем в разомкнутой системе. Поэтому отрицательная обратная связь по току в регуляторах скорости применяется только в сочетании с отрицательной обратной связью по скорости.

Передаточные функции по задающему воздействию разомкнутой W(p) и замкнутой Ф(p) систем:

-для разомкнутой системы;

— для замкнутой системы;

Здесь «-» cоответствует положительной обратной связи по току;

«+» cоответствует отрицательной обратной связи по току;

При положительной обратной связи по току в режиме недокомпенсации система устойчива;

— в режиме перекомпенсации система не устойчива;

— в режиме компенсации система находится на границе устойчивости.

При отрицательной обратной связи система всегда устойчива.

Характер переходного процесса в системе зависит от коэффициента x3 и W03. Так как Wор = W03 , скорость затухания переходного процесса в замкнутой и разомкнутой системах одинакова. Если принять xр = 1, тогда в режиме:

— недокомпенсации x3 1; переходной процесс апериодический.

Хотя в режиме недокомпенсации система устойчивости, регулятор скорости в таком режиме самостоятельно практического применения не получил; он широко используется совместно с отрицательной обратной связи по скорости в системах с повышенными требованиями к жесткости статической характеристики.

Для установившегося режима составим структурную схему (Рис. 10-14.).

В данном случае имеем систему стабилизации напряжения, подводимого к якорю ДПТ. Полагая выходным сигналом напряжение Uд , находим:

,

где Uдо — напряжение на входе ДПТ при Iс = 0

— падение напряжения в ТП в замкнутой системе при Iс > 0.

DUдр — падение напряжения в ТП в разомкнутой системе;

Rп — внутреннее сопротивление ТП;

Кн — коэффициент обратной связи по напряжению.

Uз выражения для DUдз и DUдр видно, что падение напряжения в замкнутой системе при одинаковых Iс в (1+Кр Кп Кн ) раз меньше, чем в разомкнутой; замкнутая система обеспечивает стабилизацию напряжения Uд , компенсируя падение напряжения в силовой цепи преобразователя. Величина DUдз является статической ошибкой по возмущению. При К = ¥ имеем идеальный источник питания неограниченной мощности и статическая характеристика регулятора будет представлять естественную характеристику ДПТ НВ (К = Кр Кп Кн ).

В общем случае статическая характеристика регулятора скорости:

Следовательно: обратная связь по напряжению не может быть использована для стабилизации w ЭП. Обычно она используется в регуляторах w в сочетании с другими видами обратных связей.

Динамические характеристики замкнутой системы авт. регулирования с отрицательной обратной связью по напряжению такие же как и в разомкнутой системе, т.е.


источники:

http://habr.com/ru/post/520770/

http://www.bestreferat.ru/referat-115567.html

Название: Замкнутые системы управления
Раздел: Промышленность, производство
Тип: учебное пособие Добавлен 07:04:36 06 мая 2009 Похожие работы
Просмотров: 2167 Комментариев: 21 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно Скачать