Уравнение скобки умножить на скобки

Перемножение скобок

Вы будете перенаправлены на Автор24

При математических вычислениях операции над числами и переменными часто для удобства или наглядности группируют с помощью круглых скобок. Случаются и противоположные ситуации, когда выражение в скобках необходимо преобразовать к тождественному выражению, не содержащему скобок.

Одним из наиболее сложных случаев раскрытия скобок является перемножение двух или более заключенных в скобки выражений.

Для краткости вместо «перемножение выражений, заключенных в скобки» допустимо говорить «перемножение скобок».

Чтобы получать корректные результаты при перемножении скобок, необходимо придерживаться определенных математических алгоритмов.

Во-первых, следует помнить, когда при раскрытии скобок знак меняется:

  • когда перед скобками стоит знак плюс, его можно опустить вместе со скобками;
  • когда перед скобками стоит знак минус, его можно опустить вместе со скобками, однако все заключавшиеся в них слагаемые поменяют знак на противоположный.

Во-вторых, следует иметь в виду распределительный закон умножения: при умножении числа на сумму чисел следует это число умножить по отдельности на каждое слагаемое, а полученные произведения сложить. Например:

$5 \cdot (3 + 4) \implies 5 \cdot 3+5 \cdot 4 \implies 35$.

Распределительный закон умножения является частным случаем математической дистрибутивности.

Умножение числа или переменной на выражение в скобках или выражения в скобках на число или переменную принято называть раскрытием скобок.

В общем случае раскрытие скобок выглядит как

$(a_1 ± a_2 ± … ± a_n) \cdot b = a_1 \cdot b ± a_2 \cdot b ± … ±a_n \cdot b$

Понятно, что выражение в скобках и множитель $b$ можно поменять местами, результат раскрытия будет такой же. Множитель при скобках (в данном случае $b$) называют общим множителем.

Готовые работы на аналогичную тему

Когда перед скобками отсутствуют числа или переменные, общим множителем являются $1$ или $−1$, в зависимости от знака перед скобками:

  • в случае, если перед скобками находится плюс, общим множителем считается $1$;
  • если перед скобками находится минус, то общий множитель равен $−1$.

Еще одним приемом, помогающим раскрывать скобки, является приведение подобных слагаемых, то есть таких, в которых участвуют однотипные переменные, например:

$-4 \cdot (2b + 1) — 2b + 3$

После раскрытия скобок окажется, что переменная $b$ дважды встречается в получившемся выражении, равно как и свободные члены:

$-4 \cdot (2b + 1) — 2b + 3 = -8b + (-4) + (-2b) + 3 = (-8 + (-2)) \cdot b + (-4 + 3)$

Таким образом, мы получили две группы подобных слагаемых, которые можно безопасно складывать и вычитать в рамках своих скобок. Применяя правило смены знака, получим

Переменные, возведенные в степень, рассматриваются как подобные слагаемые. Рассмотрим выражение

$3 \cdot x^2 \cdot \left( 1 — x + \frac<1> \right)$.

После раскрытия скобок получаем:

$3 \cdot x^2 \cdot 1 — 3 \cdot x^2 \cdot x + 3 \cdot x^2 \cdot \frac<1>$.

При умножении скобки на скобку одно из выражений рассматривается как общий множитель. Рассмотрим произведение

$(a_1 + a_2) \cdot (b_1 + b_2)$.

Обозначим выражение $(b_1 + b_2)$ переменной $b$, превратив его в общий множитель, после чего задачу можно свести к уже знакомому виду:

$(a_1 + a_2) \cdot (b_1 + b_2) = (a_1 + a_2) \cdot b = (a_1 \cdot b + a_2 \cdot b) = a_1 \cdot b + a_2 \cdot b$.

Заменив везде $b$ на $(b_1 + b_2)$, повторно воспользуемся правилом умножения выражения на скобку:

$a_1 \cdot b + a_2 \cdot b=a_1 \cdot (b_1 + b_2) + a_2 \cdot (b_1 + b_2) = \\ (a_1 \cdot b_1 + a_1 \cdot b_2) + (a_2 \cdot b_1 + a_2 \cdot b_2) = \\ a_1 \cdot b_1 + a_1 \cdot b_2 + a_2 \cdot b_1 + a_2 \cdot b_2$.

В результате данного преобразования выражение из произведения двух скобок стало суммой произведений каждого слагаемого из первого выражения-скобки на каждое слагаемое второго.

Чтобы умножить одну сумму, представленную, как выражение в скобках, на другую, нужно каждое слагаемое первой умножить на каждое слагаемое второй, а затем сложить получившиеся произведения.

В виде формулы это можно записать так:

$(a_1 + a_2 + . + a_n) \cdot (b_1 + b_2 + . + b_n) = \\ + a_1 \cdot b_1 + a_1 \cdot b_2 + . + a_1 \cdot b_n + \\ + a_2 \cdot b_1 + a_2 \cdot b_2 + . + a_2 \cdot b_n + \\ + . + \\ + a_n \cdot b_1 + a_n \cdot b_2 + . + a_n \cdot b_n \\ $

Для иллюстрации этого правила раскрытия скобок при умножении, раскроем их в выражении

$(1 + x) \cdot (x^2 + x + 6)$.

Запишем сумму произведений первого слагаемого $1$ из первой части на каждое слагаемое $x^2$, $x$ и $6$ из второй, затем аналогично поступим со вторым слагаемым:

$(1 + x) \cdot (x^2 + x + 6) = \\ (1 \cdot x^2 + 1 \cdot x + 1 \cdot 6 + x \cdot x^2 + x \cdot x + x \cdot 6) = \\ 1 \cdot x^2 + 1 \cdot x + 1 \cdot 6 + x \cdot x^2 + x \cdot x + x \cdot 6 $.

Если в скобках присутствуют отрицательные члены (со знаками минус), то прежде, чем применять этот способ следует преобразовать выражения в скобках в суммы. Например, избавимся от скобок в выражении

$(1 − x) \cdot (3 \cdot x \cdot y − 2 \cdot x \cdot y^3)$.

Представим его в виде сумм:

$(1 + (−x)) \cdot (3xy + (−2xy^3))$.

Теперь можно применять вышеприведенное правило перемножения слагаемых:

$(1 + (−x)) \cdot (3xy + (−2xy^3)) = (1 \cdot 3xy + 1 \cdot (−2xy^3) + (−x) \cdot 3xy + (−x) \cdot (−2xy^3)) $.

Раскроем оставшиеся скобки, помня правила перемножения положительных и отрицательных чисел:

$1 \cdot 3xy − 1 \cdot 2xy^3 − x \cdot 3 \cdot xy + x \cdot 2xy^3$.

В выражениях, в которых перемножаются три и больше выражений в скобках, проводится по тому же принципу последовательно: сначала обрабатываются два первых множителя, результат заключается в дополнительные скобки, внутри которых раскрытие производится по стандартному алгоритму. Например, раскроем скобки в выражении

$(2 + 4) \cdot 3 \cdot (5 + 7 \cdot 8)$.

Оно представляет собой произведение трех множителей $(2 + 4)$, $3$ и $(5 + 7 \cdot 8)$. Первые два множителя для наглядности заключим в дополнительные скобки:

$(2+4) \cdot 3 \cdot (5 + 7 \cdot 8) = ((2+4) \cdot 3) \cdot (5 + 7 \cdot 8)$.

Произведем умножение скобки на число:

$((2 + 4) \cdot 3) \cdot (5 + 7 \cdot 8) = (2 \cdot 3 + 4 \cdot 3) \cdot (5 + 7 \cdot 8)$.

Перемножим выражения в скобках:

$(2 \cdot 3 + 4 \cdot 3) \cdot (5 + 7 \cdot 8) = 2 \cdot 3 \cdot 5 + 2 \cdot 3 \cdot 7 \cdot 8 + 4 \cdot 3 \cdot 5 + 4 \cdot 3 \cdot 7 \cdot 8$.

Вместо чисел внутри скобок могут присутствовать переменные, а также другие выражения.

Перемножить выражения в скобках $(x + 2) \cdot (2x — 1)$.

Преобразуем выражения в суммы:

$(x + 2) \cdot (2x — 1) = (x + 2) \cdot (2x + (-1))$

Последовательно перемножим слагаемые:

$x \cdot 2x + 2 \cdot 2x + x \cdot (-1) + 2 \cdot (-1)$

Упростим выражения в рамках каждого слагаемого, получим:

Ответ:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 04 03 2021

Раскрытие скобок: правила и примеры (7 класс)

Основная функция скобок – менять порядок действий при вычислениях значений числовых выражений . Например, в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).

Однако если мы имеем дело с алгебраическим выражением , содержащим переменную — например таким: \(2(x-3)\) – то вычислить значение в скобке не получается, мешает переменная. Поэтому в таком случае скобки «раскрывают», используя для этого соответствующие правила.

Правила раскрытия скобок

Если перед скобкой стоит знак плюс, то скобка просто снимается, выражение в ней при этом остается неизменным. Иначе говоря:

Здесь нужно пояснить, что в математике для сокращения записей принято не писать знак плюс, если он стоит в выражении первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не \(+7+3\), а просто \(7+3\), несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение \((5+x)\) – знайте, что перед скобкой стоит плюс, который не пишут.


Пример. Раскройте скобку и приведите подобные слагаемые: \((x-11)+(2+3x)\).
Решение: \((x-11)+(2+3x)=x-11+2+3x=4x-9\).

Если перед скобкой стоит знак минус, то при снятии скобки каждый член выражения внутри нее меняет знак на противоположный:

Здесь нужно пояснить, что у \(a\), пока оно стояло в скобке, был знак плюс (просто его не писали), и после снятия скобки этот плюс поменялся на минус.

Пример: Упростите выражение \(2x-(-7+x)\).
Решение: внутри скобки два слагаемых: \(-7\) и \(x\), а перед скобкой минус. Значит, знаки поменяются – и семерка теперь будет с плюсом, а икс – с минусом. Раскрываем скобку и приводим подобные слагаемые .

Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение: \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

Если перед скобкой стоит множитель, то каждый член скобки умножается на него, то есть:

Пример. Раскройте скобки \(5(3-x)\).
Решение: В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей.

Пример. Раскройте скобки \(-2(-3x+5)\).
Решение: Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

Осталось рассмотреть последнюю ситуацию.

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:

Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение: У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:

Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…

Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\) . Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\) . А если подставить минус единицу, получим правило \(-(a-b)=-a+b\) . Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Скобка в скобке

Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).

Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение, просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.

Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:

Выполнять задание начнем с раскрытия внутренней скобки (той, что внутри). Раскрывая ее, имеем дело только с тем, что к ней непосредственно относиться – это сама скобка и минус перед ней (выделено зеленым). Всё остальное (не выделенное) переписываем также как было.

\(=7x+2(5\) \(-3x-y\) \()=\)

Теперь раскрываем вторую скобку, внешнюю.

Упрощаем получившееся выражение…

Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение:

Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается.

Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке.

Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него.

И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные.

Раскрытие скобок — это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.

Раскрытие скобок: правила и примеры

Раскрытие скобок и правила применения – это одна из основных тем математике, на базе которой решаются многие задания во всех последующих классах. Поэтому правила раскрытия скобок необходимо усвоить в обязательном порядке.

Итак, основная функция скобок – задать порядок вычислений, так как в зависимости от того, в какой последовательности будут решаться примеры и выражения, зависит ответ. Раскрыть скобки означает избавиться от них, не влияя на результат . При этом существуют правила, которые применяются при раскрытии скобок.

Раскрытие скобок: правила

Правило раскрытия скобок при сложении

Если перед скобками стоит плюс, то скобки просто опускаются.
Иными словами, скобки исчезнут, а то, что было в скобках, запишется без изменений.
Например, (a−b) = a−b.

В данном правиле следует учитывать, что в математике не принято писать знак плюс, если он стоит в выражении первым. Например, если мы складываем два положительных числа 2 и 3, то запишем 2+3, а не +2+3. Значит перед скобками, которые стоят в начале выражения, стоит плюс, который не пишут.

Пример 1: 8+(5−3) = 10. Ответ: 8+5–3 = 10.
Пример 2: 6+(−1+2) = 7. Ответ: 6–1+2 = 7.
Пример 3: 8a + (3b −6a). Ответ: 8a + 3b −6a = 2a + 3b.

Правило раскрытия скобок при вычитании

Если перед скобками стоит минус, то скобки опускаются, а каждое слагаемое внутри нее меняет свой знак на противоположный.
Например, −(a−b) = −a+b

Пример 1: 8–(5–3) = 6. Ответ: 8 – 5 + 3 = 6.
Пример 2: 6 − (−1 + 2) = 5. Ответ: 6 + 1 – 2 = 5.
Пример 3: 8a–(3b −6a). Ответ: 8a – 3b + 6a = 14a – 3b.
Пример 4: −(5b −2). Ответ: −5b +2.

Раскрытие скобок при умножении

Если перед скобками стоит знак умножения, то каждое число внутри скобок умножается на множитель, стоящий перед скобками.
При этом умножение минуса на минус дает плюс, а умножение минуса на плюс дает минус.
Данное правило основано на распределительном законе умножения: a(b+c) = ab + ac.

Пример 1: 8×(5 − 3) = 16. Ответ: 8 ×5 − 8 ×3 = 16.
Пример 2: a×(7 +2). Ответ: a×7+a×2 = 7a + 2a = 9a.
Пример 3: 8×(3b −6a). Ответ: 8×3b – 8×6a = 24b–48a

Раскрытие скобок при делении

Если после скобок стоит знак деления, то каждое число, стоящее внутри скобок, делится на делитель, стоящий после скобок.

Пример 1: (25−15):5. Ответ: 25:5−15:5= 2.
Пример 2: (−14a +10):2. Ответ: −14a:2 +10:2 = −7a +5.
Пример 3: (36b + 6a):6. Ответ: 36b:6 + 6a:6 = 6b + a.

Раскрытие скобок при умножении двух скобок

При умножении скобки на скобку, каждое слагаемое первой скобки умножается на каждое слагаемое второй скобки.
Например, (c+d) × (a−b) = c×(a−b)+d×(a−b) = ca−cb+da−db

Пример. Раскрыть скобки: (2−a) × (3a−1).
Решение:
Шаг 1. Убираем первую скобку (каждое ее слагаемое умножаем на вторую скобку): 2 × (3a−1) − a × (3a−1).
Шаг 2. Раскрываем произведение скобок: (2×3a− 2×1) – (a×3a−a×1) = 2×3a− 2×1 – a×3a + a×1.
Шаг 3. Перемножаем и приводим подобные слагаемые: 6a–2–3a2+a = 7a–2–3a2

Раскрытие вложенных скобок

Иногда встречаются примеры со скобками, которые вложены в другие скобки. Чтобы решить такую задачу, нужно сначала раскрыть внутреннюю скобку (при этом остальное выражение оставить без изменений), а потом внешнюю скобку.

Пример 1. 7a + 2 × (5− (3a+b)).
Решение:
Шаг 1. Раскроем внутреннюю скобку (не трогая остальное): 7a + 2 × (5 − (3a+b)) = 7a + 2 × (5 − 3a − b).
Шаг 2. Раскроем внешнюю скобку: 7a + 2 × (5 − (3a+b)) = 7a + 2×5 − 2×3a − 2×b.
Шаг 3. Упростим выражение: 7a + 10 − 6a − 2b = a+10-2b.

Раскрытие скобок в натуральной степени

Если стоит скобка в натуральной степени (n), то чтобы раскрыть скобки, нужно найти произведение скобок, перемноженных несколько раз (n раз).

Например, в примере (a+b)2 = (a+b)×(a+b) нужно перемножить скобки (a+b) два раза, далее раскрываем скобки, где каждое слагаемое первой скобки умножается на каждое слагаемое второй скобки.


источники:

http://cos-cos.ru/math/150/

http://intmag24.ru/dlya-shkolnikov/raskrytie-skobok-pravila-i-primery/