Уравнение скорости движения реактивного самолета

Написать уравнение скорости движения реактивного самолёта, начинающего разбег по взлётной полосе аэродрома, если результирующая сила тяги двигателя равна 90кН, а его масса равна 50т?

Физика | 5 — 9 классы

Написать уравнение скорости движения реактивного самолёта, начинающего разбег по взлётной полосе аэродрома, если результирующая сила тяги двигателя равна 90кН, а его масса равна 50т.

(с решением пожалуйста).

Из второго закона Ньютона следует :

отсюда можем найти ускорение, действующее на самолёт :

a = 90000 / 50000 = 1, 8 м / с ^ 2.

Скорость для равноускоренного движения с нулевой начальной можно выразить как :

Отсюда, подставляя имеющееся значение :

Космический корабль массой 50000 кг имеет реактивный двигатель силой тяги 100 кН?

Космический корабль массой 50000 кг имеет реактивный двигатель силой тяги 100 кН.

Сколько времени должен работать двигатель для изменения скорости корабля на 10 м / с.

Определите работу силы тяги двигателя на пути 80м, если сила тяги равна 6, 5 кН?

Определите работу силы тяги двигателя на пути 80м, если сила тяги равна 6, 5 кН.

С каким ускорением двигался при разбеге реактивный самолёт массой 50 т, если сила тяги двигателя 80 кН?

С каким ускорением двигался при разбеге реактивный самолёт массой 50 т, если сила тяги двигателя 80 кН?

Космический корабль массой 50000 кг имеет реактивный двигатель силой тяги 100 кН?

Космический корабль массой 50000 кг имеет реактивный двигатель силой тяги 100 кН.

Сколько времени должен работать двигатель для изменения скорости корабля на 10 м / с.

Какой надо выбрать масштаб и географическое изображение силы, если известно что двигатель автомобиля способен развить силу тяги равную 6 кн ; масса автомобиля 1 тонна ; сила сопротивления движению авт?

Какой надо выбрать масштаб и географическое изображение силы, если известно что двигатель автомобиля способен развить силу тяги равную 6 кн ; масса автомобиля 1 тонна ; сила сопротивления движению автомобиля равна 1 кн.

С каким ускорением двигался при разбеге реактивный самолёт массой 50т, если сила тяги двигателя 50кН?

С каким ускорением двигался при разбеге реактивный самолёт массой 50т, если сила тяги двигателя 50кН?

С каким ускорением движется при разбеге реактивный самолет массой 60т , если сила тяги двигателей 90 кН?

С каким ускорением движется при разбеге реактивный самолет массой 60т , если сила тяги двигателей 90 кН?

С каким ускорением движется при разбеге реактивный самолет массой 60т если сила тяги двигателей 90кН?

С каким ускорением движется при разбеге реактивный самолет массой 60т если сила тяги двигателей 90кН?

С каким ускорением двигался при разбеге реактивный самолет массой 50 тонн, если силп тяги двигателей 80кН?

С каким ускорением двигался при разбеге реактивный самолет массой 50 тонн, если силп тяги двигателей 80кН.

С каким ускарение движется при разбеге реактивный самолёт массой 60тонн, если сила тяги двигателя 90 килоньютон?

С каким ускарение движется при разбеге реактивный самолёт массой 60тонн, если сила тяги двигателя 90 килоньютон.

На странице вопроса Написать уравнение скорости движения реактивного самолёта, начинающего разбег по взлётной полосе аэродрома, если результирующая сила тяги двигателя равна 90кН, а его масса равна 50т? из категории Физика вы найдете ответ для уровня учащихся 5 — 9 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.

По закону Архимеда, масса вытесненной воды равна массе тела, погруженного в воду. А так как масса тела по рисунку 1 26, 52 г то и масса воды, поднявшейся на уровень выше, точно такая же. Значит на рисунке 1 вытесненная вода 4, 2 мл и 26, 52 г, а на..

Так как угол отражения равен углу падения, то при увеличении угла падения угол отраженного луча увеличится на такую же величину. Угол между падающим и отраженным лучами : AOB = α + β = 2α При увеличении угла падения на угол A₁OA : A₁OB₁ = 2α + A₁OA ..

Дано V = 360 км \ ч = 100м \ с t = 25с S — ? S = (Vо + V) * t \ 2 = 50 * 25 = 1250 м — ответ.

S = a * t ^ 2 / 2 a = 2 * L / t ^ 2 = 2 * 110 / 18 ^ 2 = 0, 68 м / с2 V = 2 * S / t = 2 * 110 / 18 = 12, 2 м / с a1 = a * 1, 8 = 0, 68 * 1, 8 = 1, 22 м / с2 t1 = sqrt(2 * S / a1) = sqrt(2 * 110 / 1, 22) = 13, 4 с tt / t1 = 18 / 13, 4 = 1, 34 Время сп..

Реактивное движение в физике — формулы и определение с примерами

Содержание:

Реактивное движение:

Одним из наиболее ярких проявлений и практического применения закона сохранения импульса является реактивное движение. Это движение, которое возникает, когда от системы отделяется и движется с некоторой скоростью относительно нее какая-то ее часть. В живой природе так движется осьминог (рис. 121), выбрасывая воду.

Типичным примером реактивного движения может служить движение ракет.

На рисунке 122 схематично представлено устройство ракеты. В головной ее части 1 помещается полезный груз. Это может быть боезаряд, навигационное оборудование для управления движением боевой ракеты. В космическом корабле в головной части помещаются космонавты, научные приборы, система обеспечения жизнедеятельности, система навигационного оборудования и т. п. В части 2 находится запас топлива и окислителя, а также различные системы управления. Топливо и окислитель подаются в камеру сгорания 3, где топливо сгорает и превращается в газ, имеющий высокую температуру. Реактивное сопло 4 формирует реактивную струю, движущуюся с большой скоростью относительно ракеты. Газ в камере и все остальное, что составляет ракету, можно рассматривать как систему двух взаимодействующих тел.

Будем пока считать, что силы притяжения к Земле отсутствуют. Тогда ракета представляет собой замкнутую систему, и перед стартом ее общий импульс относительно Земли равен нулю. Газ, вырывающийся из сопла, имеет определенный импульс. Поэтому оставшаяся часть ракеты по закону сохранения импульса получает импульс, равный по модулю импульсу газа, но противоположный по направлению. На рисунке 122 стрелками показаны силы давления газа, сообщающие ракете этот импульс.

Закон сохранения импульса позволяет оценить скорость ракеты и силу, действующую на нее. Предположим, что за некоторый промежуток времени Δt из сопла вырывается масса газа Δm со скоростью относительно ракеты, тогда, обозначив массу ракеты через M, по закону сохранения импульса можно записать:

где — скорость ракеты.
Величину можно переписать следующим образом:

Но — масса газа, которая выбрасывается из ракеты в единицу времени. Нетрудно убедиться, что величина имеет размерность силы, и она называется реактивной силой. Реактивная сила равна произведению массы газа, вырывающегося из сопла в единицу времени, и скорости струи газа.

Следовательно, чтобы реактивная сила была максимальной, нужно повышать скорость газовой струи. В современных ракетах она может достигать 4,5 .
Уравнение (1) можно записать в виде

(2)

где в правой части стоит импульс реактивной силы , который увеличивает скорость ракеты. Из (2) следует, что скорость ракеты направлена в сторону, противоположную скорости выбрасываемых газов.

Вследствие вылета газов масса ракеты все время уменьшается. Так что масса космического корабля, которая может быть выведена на орбиту искусственного спутника Земли, составляет малую долю его первоначальной массы. Например, при скорости космического корабля, равной первой космической, точный расчет показывает, что для одноступенчатых ракет при скорости вылета газов относительно ракеты 2 отношение массы топлива к полезной массе равно 55. Если скорость газовой струи 3 , то отношение масс равно 14.

Ракеты известны давно. Впервые о них упоминается в китайских хрониках 1150 г. Естественно, что такое интересное явление, как движение ракет, изучалось многими учеными. Так, в 1650 г. в Амстердаме вышла книга «Великое искусство артиллерии» генерал-лейтенанта польской армии К. Семеновича, уроженца Беларуси. В ней была глава, посвященная описанию движения ракет и их конструкций. Эта книга практически одновременно была переведена на основные европейские языки.

Большой вклад в теорию движения ракет внесли русские ученые И. В. Мещерский и К. Э. Циолковский. В 1903 г. К. Э. Циолковский впервые предложил и теоретически обосновал идею использования ракет для космических полетов. Им была получена формула, сейчас носящая его имя, позволяющая оценить запас топлива, который должен быть в ракете, чтобы она стала искусственным спутником Земли. В 1904 г. И. В. Мещерским было получено уравнение, с помощью которого можно описать движение ракет.

Идея К. Э. Циолковского была осуществлена советскими учеными под руководством С. П. Королева. Первый в истории искусственный спутник Земли массой 84 кг был запущен с помощью ракеты в Советском Союзе 4 октября 1957 г. Первым человеком, который совершил космический полет, был гражданин СССР Ю. А. Гагарин. 12 апреля 1961 г. он облетел земной шар за 108 мин на корабле-спутнике «Восток».

Советские ракеты первыми достигли Луны, первыми облетели Луну и сфотографировали ее невидимую с Земли сторону, первыми достигли планеты Венера.

В 1969 г. американский астронавт Н. Армстронг впервые в истории человечества ступил на поверхность другого небесного тела — Луны. Американские астронавты совершили несколько полетов на Луну с выходом на ее поверхность и длительным (до трех земных суток) сроком пребывания на ней.

Началось практическое освоение космоса. Ряд стран запустили искусственные спутники Земли, предназначенные для связи, телевидения, наблюдения за погодой, научных и других целей. Так, с помощью приборов, установленных на искусственных спутниках Земли, был обнаружен дрейф континентов. Было доказано, что расстояние между побережьями Африки и Америки увеличивается на несколько сантиметров в год.

Белорусские ученые тоже внесли свой вклад в освоение космоса. Группа ученых под руководством академика Л. И. Киселевского создала ряд научных приборов, побывавших в космосе. Ученые Института тепломассообмена HAIl Беларуси рассчитали тепловую защиту космических кораблей. Командирами космических кораблей типа «Союз» и орбитальных станций «Салют» были и уроженцы Беларуси, летчики-космонавты, дважды Герои Советского Союза П. И. Климук и В. В. Коваленок.

Главные выводы

  1. Изменение скорости ракеты обусловлено действием реактивной силы, создаваемой струей газа, вытекающей из сопла.
  2. Движение ракет (реактивное движение) объясняется выполнением закона сохранения импульса.
  3. Реактивная сила равна произведению массы газа, вырывающегося из сопла в единицу времени, и скорости струи газа относительно ракеты.

Что такое реактивное движение

Мы уже знаем, что тела образуют замкнутую систему, если взаимодействуют только друг с другом. Не изменяя механического состояния системы в целом, взаимодействие может приводить к изменению механического состояния тел, составляющих систему.

В качестве примера рассмотрим резиновый шарик с газом, лежащий на столе. Его можно считать замкнутой системой, поскольку сила тяжести, сила Архимеда и сила реакции стола компенсируют друг друга. Механическое состояние такой системы не изменяется. Если же в стенке шарика сделать отверстие, через которое газ будет выходить наружу, он начнет двигаться в направлении, противоположном направлению вытекания газа (рис. 2.55). Такое перераспределение массы системы в пространстве вызывает изменение скоростей обеих ее частей (системы).

Подобное наблюдается и в случае, когда с неподвижной лодки, находящейся на воде, бросить весло (или другой предмет определенной массы) в направлении кормы. Следствием такого действия будет перемещение лодки в противоположном направлении.

Движение резинового шарика, из которого вытекает газ, и движение лодки, из которой выбрасывают весло, происходят вследствие отделения от системы какой-то ее части.

Движение, происходящее вследствие отделения от системы ее части с некоторой скоростью, называют реактивным.

Примеры реактивного движения можно найти и в природе. Так, кальмар для осуществления быстрого перемещения набирает воду в полость своей мантии и резким сокращением мышц выбрасывает ее наружу (рис. 2.56).

Среди растений известен так называемый «бешеный» огурец. При созревании плода его семена выбрасываются наружу в одну сторону, а оболочка отлетает в другую (рис. 2.57).

Человек освоил принцип реактивного движения и применяет его в реактивных летательных аппаратах — ракетах и самолетах.
Основная часть ракеты — реактивный двигатель, имеющий камеру сгорания и сопло — отверстие, через которое выходят газы, образовавшиеся при сгорании топлива (рис. 2.58).

Если двигатель работает на жидком топливе, специальные насосы подают топливо и окислитель с баков, расположенных на ракете, в камеру сгорания, в результате чего происходит быстрое сгорание топлива и выброс газов через сопло (рис. 2.59).

Существуют ракеты, у которых топливо и окислитель находятся непосредственно в камере сгорания в твердом состоянии (рис. 2.60). При сгорании топлива образуется раскаленный газ, создающий давление на стенки и дно камеры. Там, где камера сгорания переходит в сопло, такое давление отсутствует.

Сила давления на дно камеры сгорания является реактивной силой тяги двигателя, изменяющей импульс ракеты.

Чем дольше работает двигатель, тем большую скорость набирает ракета. Измерить силу давления газов на дно камеры сгорания по многим причинам очень сложно. Поэтому движение ракеты рассчитывают по закону сохранения импульса.

Если ракету с топливом считать замкнутой системой, то ее начальный импульс в системе, связанной с ее центром масс, равен нулю. Как только начинает работать двигатель, раскаленные газы выходят из сопла, приобретают определенный импульс а ракета —

Расчеты на основании закона сохранения импульса показывают, что увеличить скорость ракеты можно увеличив или массу топлива, или скорость вытекания газов, поскольку

Устройства, использующие принцип реактивного движения, широко применяются в современной жизни: реактивные самолеты, военная и космическая техника и пр.

Значительный вклад в развитие реактивной техники сделали украинские ученые и инженеры, среди которых следует назвать генерала царской армии по происхождению украинца А.Д. Засядько, изобретателя Н.И. Кибальчича, академика В.П. Глушко и др. Украина принадлежит к немногим странам, которые создают современную ракетную технику для освоения космоса. На «Южмаше» в Днепропетровске создают ракеты «Зенит», при помощи которых на околоземную орбиту выводят искусственные спутники различного назначения.

Определение реактивного движения

Интересный и важный случай практического использования закона сохранения импульса — это реактивное движение. Так называют движение тела, возникающее при отделении от тела с определенной скоростью некоторой его части.

Реактивное движение осуществляют, например, ракеты. Любая ракета — это система двух тел. Она состоит из оболочки и топлива, которое в ней находится. Оболочка имеет форму трубы, один конец которой закрыт, а второй открыт и обеспечен трубчатой насадкой с отверстием особенной формы — реактивным соплом.

Топливо при запуске ракеты сжигается и превращается в газ высокого давления и высокой температуры. Благодаря высокому давлению этот газ с большой скоростью вырывается из сопла ракеты. Оболочка ракеты движется при этом в противоположную сторону (рис. 290).

Перед стартом ракеты ее общий импульс (оболочки и топлива) в системе координат, связанной с Землей, равен нулю, ракета не движется относительно Земли. В результате взаимодействия газа и оболочки, которая выбрасывает газ, она приобретает определенный импульс. Будем считать, что сила притяжения практически не влияет на движение, поэтому оболочку и топливо можно рассматривать как замкнутую систему и их общий импульс должен и после запуска остаться равным нулю. Оболочка, в свою очередь, благодаря взаимодействию с газом приобретает импульс, который равен по модулю импульсу газа, но противоположно направленного. Вот почему в движение приходит не только газ, но и оболочка ракеты. В ней могут быть размещены научные приборы для исследований, средства связи. В ракете может размещаться космический корабль, в котором находятся космонавты или астронавты.

Закон сохранения импульса дает возможность определить скорость движения ракеты (оболочки).

Допустим сначала, что весь газ, который образуется при сгорании горючего, выбрасывается из ракеты сразу, а не вытекает постепенно.

Обозначим всю массу газа, в который превращается топливо в ракете, через , а скорость газа — через . Массу и скорость движения оболочки обозначим через По закону сохранения импульса сумма импульсов оболочки и газа после запуска должна быть такой же, как до запуска ракеты, то есть должна быть равна нулю. Следовательно, или (координатная ось Оу выбрана в направлении движения оболочки). Отсюда определим скорость движения оболочки:


Из формулы видно: чем больше скорость вытекания газа и чем больше отношение массы топлива к массе оболочки, тем скорость движения оболочки ракеты больше. Поэтому достаточно большую скорость оболочка получит в том случае, если масса топлива намного больше массы оболочки. Например, чтобы скорость движения оболочки была по абсолютному значению в 4 раза больше скорости вытекания газа, необходимо, чтобы масса топлива была во столько же раз больше массы оболочки, то есть оболочка должна составлять пятую часть всей массы ракеты на старте. Ведь «полезная» часть ракеты — это сама оболочка.

С создания ракет началось активное освоение космоса. Украинский авиаконстуктор Сергей Павлович Королев и его коллеги создали ракету-носитель «Восток», и 12 апреля 1961 г. человек вышел в космическое пространство. Это был Юрий Гагарин.

Украина входит в состав космических государств мира благодаря высокому уровню научно-технического и производственного потенциала, участию в международной космической деятельности.

В марте 1999 г. состоялся первый пуск украинской ракеты-носителя «Зенит-ЗвЬ» по международной программе «Морской старт». Украина вместе с США, Норвегией и Россией стала участницей грандиозного проекта запусков с плавучего космодрома в Мировом океане.

В декабре 2004 г. были выведены в космос спутники дистанционного зондирования Земли серии «Сич», «Сич-1М» и первый украинский малогабаритный космический аппарат «МС-1-ТК».

За 15 лет работы Национального космического агентства Украины (сейчас Государственное космическое агентство Украины) и предприятий украинской космической отрасли было обеспечено более 100 пусков ракет-носителей и выведено в космос более 180 космических аппаратов.

В октябре 2016 г. с о. Уоллопс (штат Вирджиния, США) состоялся успешный запуск модернизированной ракеты-носителя среднего класса Antares-230 с транспортным космическим кораблем Cygnus. Главным разработчиком ракеты-носителя является американская компания Orbital АТК, а основную конструкцию ее первой ступени создали украинские госпредприятия космической отрасли КБ «Южное» им. М.К. Янгеля и ПО «Южный машиностроительный завод им. А.М. Макарова» (г. Днепр) в кооперации с предприятиями «Хартрон-АРКОС» (г. Харьков), «Хартрон-ЮКОМ» (г. Запорожье), «ЧЕЗАРА», «РАПИД» (г. Чернигов) и т. п.

Украинские специалисты занимались модернизацией первой степени ракеты-носителя Antares, адаптируя эту степень к новому, более эффективному двигателю.

Грузовой корабль Cygnus доставил на Международную космическую станцию свыше 2 т груза (образцы для проведения научных экспериментов, научные инструменты и продовольствие), а также оборудование для вывода в космическое пространство миниатюрных спутников. Астронавт-ка NASA Кейт Рубине сделала снимки стыковки корабля с Международной космической станцией, которые были опубликованы на официальной странице астронавтов агентства в Twitter (рис. 291).

Примеры решения задачи

Пример №1

Снаряд разорвался в верхней точке траектории на два осколка одинаковой массы. Скорость движения снаряда непосредственно перед взрывом была а скорость движения одного из осколков сразу после взрыва и направлена вертикально вверх. Вычислите значение и направление скорости второго осколка в момент взрыва.

Решение:

Поскольку при взрыве снаряда возникают большие внутренние силы и время их действия очень мало, то внешней силой притяжения можно пренебречь и считать систему на время взрыва замкнутой. По закону сохранения импульса:

Перепишем это уравнение в проекциях на координатные оси:


Учитывая, что по условию задачи
получим:
Тогда

Второй осколок полетит со скоростью вниз под углом а = 45° к горизонту.

Пример №2

Мальчик массой 50 кг движется от носовой части к корме лодки массой 150 кг со скоростью 0,6 м/с относительно лодки. С какими скоростями движутся при этом лодка и мальчик относительно воды? Сопротивлением воды пренебречь.
Дано:

Решение:

Поскольку равнодействующая сил притяжения и архимедовой силы, действующих на лодку, равна нулю, система тел «лодка-мальчик» является замкнутой. Силой сопротивления воды, возникающей при движении лодки, пренебрежем, поскольку при малых скоростях эта сила небольшая. Применим закон сохранения импульса относительно системы отсчета, связанной с неподвижной водой. Импульс системы до начала движения мальчика равен нулю.

За положительное направление оси Ох выберем направление движения лодки. Относительно воды проекция импульса лодки на ось Ох равна , а импульса мальчика — соответственно скорости движения мальчика и лодки относительно воды. Из закона сложения скоростей следует, что

Запишем теперь закон сохранения импульса:

Отсюда скорости лодки и мальчика относительно воды равны:


Ответ: скорость движения лодки равна 0,15 м/с, а скорость движения мальчика 0,45 м/с.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Освоение космоса — история, этапы и достижения с фотографиями
  • Закон сохранения механической энергии в физике
  • Релятивистская механика в физике
  • Теория относительности Эйнштейна
  • Гравитационные силы в физике
  • Центр тяжести в физике (центр масс)
  • Импульс тела в физике
  • Замкнутая система в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Горизонтальный полет самолета

ГОРИЗОНТАЛЬНЫЙ ПОЛЕТ САМОЛЕТА

Полет самолета от взлета до посадки представляет собой сочетание различных видов движения. Наиболее продолжительным видом движения является прямолинейный полет.

Установившимся прямолинейным полетом называется такое движение самолета, при котором скорость движения с течением времени не изменяется по величине и направлению.

К установившемуся прямолинейному полету относятся горизонтальный полет, подъем и снижение самолета (планирование).

Определим характерные режимы и характеристики горизонтального полета, подъема и планирования применительно к самолетам Як-52 и Як-55, их зависимость от высоты полета, полетного веса и режима работы двигателя.

УСТАНОВИВШИЙСЯ ГОРИЗОНТАЛЬНЫЙ ПОЛЕТ

Установившимся горизонтальным полетом называется прямолинейный полет с постоянной скоростью без набора высоты и снижения.

На Рис. 1 показаны силы, действующие на самолет в горизонтальном полете без скольжения, где

Р — сила тяги двигателя.

Все эти силы необходимо считать приложенными к центру тяжести самолета, так как его прямолинейный полет возможен лишь при условии, что сумма моментов всех сил относительно центра тяжести равна нулю.

Необходимое равновесие моментов летчик создает соответствующим отклонением рулей управления.

Из рисунка видно, что вес самолета G уравновешивает подъемная сила самолета Y, а лобовое сопротивление Х — сила тяги Р.

Для установившегося горизонтального полета необходимы два условия:

Y-G=0 (условие постоянства высоты H=const); (4.1)

Р-Х=0 (условие постоянства скорости V=const). (4.2)

Эти равенства называются уравнениями движения для установившегося горизонтального полета. При нарушении этих равенств движение самолета станет криволинейным и неравномерным.

Пользуясь этими равенствами, можно определить скорость, коэффициент подъемной силы, тягу и мощность, потребные для горизонтального полета.

Рис. 1 Схема действующих сил на самолет в установившемся полете

СКОРОСТЬ, ПОТРЕБНАЯ ДЛЯ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

Для того чтобы крыло самолета могло создать подъемную силу, равную весу самолета, нужно, чтобы оно двигалось с определенной скоростью относительно воздушных масс.

Скорость, необходимая для создания подъемной силы, равной весу самолета при полете самолета на данном угле атаки и данной высоте полета, называется потребной скоростью горизонтального полета.

По определению горизонтального полета должно быть выполнено условие У=G.

(4.3)

(4.4)

Решив это уравнение, найдем скорость, потребную для выполнения горизонтального полета

(4.5)

Величина потребной скорости зависит от веса самолета, площади его крыла, от высоты полета (выраженной через массовую плотность r) и коэффициента подъемной силы Су.

Из формулы (4.5) видно, что с увеличением веса самолета скорость, потребная для горизонтального полета, также увеличивается, так как для уравновешивания большего веса требуется большая подъемная сила, что достигается (при прочих равных условиях) увеличением скорости полета (см. формулу 6.4). Увеличение площади крыла, наоборот, уменьшает потребную скорость. Для расчетов на практике обычно применяют отношение

(4.6)

называемое удельной нагрузкой на крыло.

У современных самолетов удельная нагрузка на крыло колеблется в широких пределах: от 100 кг/м2 у легких самолетов до 800 кг/м2 и более у тяжелых самолетов и самолетов больших скоростей полета.

С увеличением высоты полета массовая плотность воздуха уменьшается. Согласно формуле (6.5) уменьшение плотности r приводит к увеличению потребной скорости полета.

Если изменять угол атаки, то пропорционально будет изменяться и коэффициент подъемной силы Су. А изменение Су отражается на величине потребной скорости горизонтального полета. Чем меньше Су (и угол атаки соответственно), тем больше должна быть скорость полета, и наоборот. Из этого следует важный вывод: каждому углу атаки на данной высоте полета соответствует вполне определенная скорость горизонтального полета VГ. П.

ТЯГА И МОЩНОСТЬ, ПОТРЕБНЫЕ ДЛЯ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

Потребной тягой для горизонтального полета называется тяга, необходимая для установившегося горизонтального полета, т. е. для уравновешивания лобового сопротивления самолета на данном угле атаки (Рп=Х).

В горизонтальном полете подъемная сила равна весу самолета Y=G, тогда, разделив первое равенство на второе, получим

(4.7)

Формула показывает, что чем меньше вес самолета и чем больше его качество К, тем меньшая тяга потребуется для горизонтального полета. Но качество самолета зависит от угла атаки, следовательно, при изменении угла атаки меняется и потребная тяга. Поэтому для определения потребной тяги при заданном угле атаки необходимо предварительно найти соответствующее ей качество самолета.

Чтобы найти зависимость Рп от VГ П. подставим в формулу (4.7) развернутое выражение подъемной силы, получим Из формулы видно, что потребная тяга горизонтального полета зависит от квадрата скорости.

На Рис. 2 приведены кривые зависимости Рп от VГП скорости полета на высоте Н=500 м для самолетов Як-52 и Як-55.

Рис. 2 Кривые потребных тяг для горизонтального полета самолетов Як-52 и Як-55

Задача 1. Определить тягу, потребную для горизонтального полета «самолета Як-55 при угле атаки 5° и полетном весе 870 кгс

Решение. По поляре самолета Як-55 находим, что при угле атаки 5° коэффициенты имеют значения. Су=0,39, Сх=0,045, следовательно, качество равно

Тогда потребная тяга будет иметь значение

Задача 2. Определить тягу, потребную для горизонтального полета •самолета Як-52 при угле атаки 7° и полетном весе 1290 кгс

Решение. На поляре самолета Як-52 находим, что при угле атаки 7° коэффициенты равны. Су =0,67, Сх= 0,056, следовательно,

Тогда потребная тяга будет равна

В задачах не указана высота полета, так как высота при равных углах атаки и отсутствии сжимаемости воздуха не влияет на потребную тягу.

Качество самолета зависит только от величины коэффициентов Су и Сх, а на них высота полета на скоростях до 700 км/ч не влияет. Таким образом, для самолетов Як-52 и Як-55 можно считать, что потребная тяга от высоты не зависит.

Потребная мощность. Для горизонтального полета потребной мощностью называется мощность, необходимая для обеспечения установившегося горизонтального полета на данном угле атаки и обозначается NП.

Если при полете со скоростью VГП требуется тяга РП, то потребная мощность определяется по формуле

(4.8)

Эта формула показывает, что потребная мощность зависит от тех же факторов, от которых зависят потребная тяга и скорость полета. Подставив в формулу (4.8) вместо РП и VГП их развернутые выражения, получим развернутую формулу потребной мощности

(4.9)

Из формулы видно, что потребная мощность зависит: от высоты полета самолета (плотность воздуха); от веса самолета и удельной нагрузки на крыло; от аэродинамического качества самолета и коэффициента подъемной силы.

Следовательно, потребная мощность тем больше, чем больше вес самолета, меньше плотность воздуха и хуже качество самолета.

При условии G=const и H=const потребная мощность зависит только от угла атаки и, как следствие, от скорости полета.

В горизонтальном полете потребная тяга равна лобовому сопротивлению РП=Х, тогда формула потребной мощности будет иметь следующий вид:

(4.10)

Если в формулу подставить развернутое выражение лобового сопротивления, то получим

(4.11)

Формула показывает, что мощность, потребная для горизонтального полета, пропорциональна кубу скорости (потребная тяга пропорциональна квадрату скорости). На Рис. 3 приводятся кривые зависимости Nп от V, скорости полета на высотах Н=500 м и Н=1000 м для самолетов Як-52 и Як-55.

Таким образом, чтобы увеличить скорость полета в 2 раза, мощность необходимо увеличить в 8 раз.

Рис. 3 Кривые мощностей, потребных для горизонтального полета

Задача. Определить мощность, потребную для горизонтального полета у земли, если вес самолета Як-52 G=1200 кгс, коэффициенты Су =0,4 и Сх=0,044, S=15 м2.

Решение. 1. Определим скорость полета

Решение. 2. Качество самолета

Решение. 3 Потребная тяга

Решение. 4. Потребная мощность

ЗАВИСИМОСТЬ ПОТРЕБНОЙ ТЯГИ И МОЩНОСТИ ДЛЯ ГОРИЗОНТАЛЬНОГО ПОЛЕТА ОТ СКОРОСТИ ГОРИЗОНТАЛЬНОГО ПОЛЕТА. КРИВЫЕ Н. Е. ЖУКОВСКОГО

Для полной характеристики горизонтального полета и определения летных данных самолетов воспользуемся графоаналитическим методом, предложенным . Наложим на кривые потребных тяг и мощностей Рп и Nп кривые располагаемых тяг и мощностей Рр и Np. Полученные таким образом кривые носят название кривых потребных и располагаемых тяг и мощностей, или кривых (Рис. 4, Рис. 5).

Рис. 4 Кривые располагаемых и потребных тяг самолетов Як-52 и Як-55 (кривые )

Рис. 5 Кривые располагаемых и потребных мощностей самолетов Як-52 и Як-55 (кривые )

На рисунках приведены кривые РП, NП, PР и NР самолетов Як-52 и Як-55 (Н=500 м и Н=1000 м).

Располагаемой тягой (мощностью) принято называть наибольшую тягу (мощность), которую может развить силовая установка на данной высоте и скорости полета Располагаемая тяга зависит от высоты, поэтому кривую необходимо брать для той высоты, на которой задано определить летные качества самолета

Точка пересечения кривых соответствует полету с наименьшим возможным в горизонтальном полете углом атаки, то есть полету на максимальной скорости горизонтального полета (для самолета Як 52 — Vгп =300 км/ч, для Як-55 — VГП. макс).

С уменьшением скорости полета и увеличением угла атаки потребная тяга и мощность уменьшаются, минимальная потребная тяга находится проведением касательной к кривой РП параллельно оси скорости. Точка касания обозначает угол атаки, при котором требуется минимальная тяга для горизонтального полета (для самолета Як-52 при Н=500 м Рп =103 кгс, для Як-55 при Н=500 м РПмин =87 кгс)

Из формулы потребной тяги следует, что минимальная тяга для горизонтального полета потребуется при максимальном качестве самолета

(4.12)

Максимальное качество самолета достигается при наивыгоднейшем угле атаки Скорость, соответствующая aнв, называется наивыгоднейшей скоростью горизонтального полета VНВ (для самолета Як-52 Vнв=162 км/ч, для Як-55 Vнв=137 км/ч).

При наивыгоднейшем угле атаки требуется минимальная потребная тяга Рмин. Следовательно, расход топлива на один километр пути будет минимальным и дальность полета максимальной.

Но расход топлива был бы минимальным, если бы двигатель работал без потерь. Поэтому для компенсации потерь требуется дополнительная тяга двигателя и общая тяга PПнв будет больше на эту величину. Минимальный километровый расход топлива получается на несколько большей скорости, чем наивыгоднейшая

Далее, анализируя график на Рис. 4, видно, что при дальнейшем уменьшении скорости (после наивыгоднейшей) и увеличении угла атаки потребная тяга растет. Это объясняется ухудшением качества самолета.

Скорость может быть уменьшена до минимальной, соответствующей критическому углу атаки. Касательная к кривой, параллельной оси Р, отмечает угол атаки и соответствующую ему минимальную скорость горизонтального полета.

Для того чтобы установить ту или иную скорость горизонтального полета самолета, летчику необходимо создать условия (изменяя тягу двигателя) равенства располагаемой и потребной тяги (РП=Рр). Поэтому на скоростях, меньших максимальной, летчику необходимо уменьшить тягу двигателя до определенной величины, и точка пересечения располагаемой и потребной тяги будет на меньшей, выбранной летчиком скорости.

Если располагаемая тяга будет больше потребной, то самолет начнет подниматься, если меньше — снижаться. В обоих случаях самолет не будет лететь горизонтально.

Анализируя график Рис. 4, можно сделать вывод, что на всех скоростях, кроме максимальной, тяга силовой установки РРмакс больше потребной тяги РП.

ДИАПАЗОН СКОРОСТЕЙ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

Диапазоном скоростей горизонтального полета называется разность между максимальной и практической минимальной скоростями на одной и той же высоте полета.

Следовательно, диапазон скоростей горизонтального полета будет равен

(4.13)

Для сравнения разных самолетов пользуются понятием относительный диапазон скоростей. Относительным диапазоном скоростей называется отношение диапазона скоростей к максимальной скорости полета. Чем больше относительный диапазон скоростей, тем лучше самолет в летном отношении. В относительном диапазоне скоростей самолета находятся также характерные скорости, как экономическая, наивыгоднейшая и максимальная.

ПЕРВЫЕ И ВТОРЫЕ РЕЖИМЫ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

В установившемся горизонтальном полете тяга силовой установки должна уравновешивать лобовое сопротивление. Это значит, что в любом режиме полета, кроме Умакс, летчику необходимо задросселировать двигатель (уменьшить обороты коленчатого вала), то есть уменьшить мощность до такой степени, чтобы она сравнялась с потребной мощностью.

Если после уравновешивания самолета в одном из режимов установившегося горизонтального полета скорость по какой-либо причине изменится, то поведение самолета в большей степени будет зависеть от соотношения приращения потребной мощности и располагаемой мощности задросселированного двигателя Nдр.

Интервал первых режимов — это все скорости от Vмакс до Vэк, для которых производные мощности от скорости полета больше производной мощности задросселированного двигателя от скорости . Интервал вторых режимов — это все скорости от Vэк до Vмин, для которых

Это значит, что увеличение скорости горизонтального полета на первых режимах сопровождается уменьшением избытка мощности, а на вторых режимах — увеличением избытка мощности. Границей первых и вторых режимов горизонтального полета является экономическая скорость горизонтального полета, при которой устанавливается равенство (Рис. 6).

Полет самолета на первых режимах выполняется на малых углах атаки, когда крыло обтекается установившимся ламинарным воздушным потоком, самолет хорошо устойчив и управляем. Поэтому обычно пользуются первыми режимами.

Для установившегося горизонтального полета на некоторой скорости V1 в области первых режимов (Рис. 6) двигатель должен быть задросселирован до характеристики Мдр1. При случайном увеличении скорости горизонтального полета возникает отрицательный избыток мощности, самолет будет двигаться с торможением и вернется к исходной скорости. При уменьшении скорости избыток мощности будет направлен вперед и самолет также восстановит скорость исходного режима. Для сохранения скорости на первых режимах от летчика требуется одно — выдерживать горизонтальный полет при помощи руля высоты. Если летчику по условиям полета необходимо перейти на новую, большую скорость, в пределах первых режимов на той же высоте, то, сохраняя горизонтальный полет, он должен увеличить мощность двигателя, а для перехода на меньшую скорость горизонтального полета — уменьшить мощность силовой установки (уменьшить частоту вращения коленчатого вала).

Рис. 6 Первые и вторые режимы и диапазоны скоростей горизонтального полета

Полет на вторых режимах горизонтального полета происходит на больших углах атаки и на скоростях горизонтального полета, меньших, чем экономическая скорость, что связано с ухудшением обтекания крыла и понижением эффективности рулей, и тем самым ухудшением устойчивости и управляемости самолета, особенно поперечной. Поэтому летать на вторых режимах не рекомендуется. К ним прибегают лишь при некоторых тренировочных полетах и при выполнении посадки.

Рассмотрим влияние изменения скорости на выполнение горизонтального полета на вторых режимах. Пусть самолет выполняет горизонтальный полет на скорости V2. С увеличением скорости возникает положительный избыток мощности, и если летчик не изменит режим работы двигателя и будет выдерживать горизонтальный полет, то увеличение скорости будет продолжаться, пока не наступит равновесие на новой скорости Vi, лежащей в области первых режимов. При случайном уменьшении скорости избыток лобового сопротивления над тягой вызывает торможение самолета до минимальной скорости (самолет может сорваться в штопор).

Таким образом, на вторых режимах выдерживание постоянства высоты полета не обеспечивает сохранение скорости.

При выполнении длительного полета на вторых режимах для восстановления исходной скорости летчику необходимо либо изменением режима работы двигателя (при увеличении скорости тягу необходимо уменьшить, а при уменьшении скорости — увеличить), либо изменением угла наклона траектории полета восстановить заданную скорость горизонтального полета. Во втором случае траектория полета будет не прямолинейной, а волнообразной.

В области вторых режимов для увеличения скорости горизонтального полета необходимо сначала увеличить мощность двигателя, а затем, когда скорость начнет возрастать, уменьшить ее. Для уменьшения скорости горизонтального полета следует несколько задросселировать двигатель (уменьшить частоту вращения коленчатого вала), чтобы скорость начала падать, после чего увеличить мощность до потребной.

То есть на вторых режимах горизонтального полета требуется двойное движение рычагом управления дроссельной заслонкой карбюратора.

Исходя из вышесказанного, можно сделать вывод, что допускать уменьшение скорости ниже экономической не следует. Иначе говоря, для самолетов Як-52 и Як-55 экономическая скорость является практически минимальной скоростью горизонтального полета.

Разность между скоростью VГП, которую летчик выдерживает в горизонтальном полете, и экономической скоростью называется запасом скорости DV:

В полете на малой высоте рекомендуется иметь запас скорости (для самолета Як-52 Vмин=170 км/ч), равный примерно 20. 30% экономической скорости горизонтального полета.

Из сказанного ясно, что в летной практике запас скорости имеет большое значение. Имея достаточный запас скорости, летчик гарантирован от неожиданного попадания в интервал вторых режимов, следовательно, и от опасности потери скорости.

ЭВОЛЮТИВНАЯ СКОРОСТЬ ПОЛЕТА

Эволютивная скорость летательного аппарата — минимальная скорость, на которой самолет имеет возможность выполнять некоторые минимальные эволюции (маневры) Для неманевренных самолетов различают минимальную эволютивную скорость: при разбеге, взлете, посадке и при уходе на второй круг.

ВЛИЯНИЕ ВЫСОТЫ НА ПОТРЕБНЫЕ СКОРОСТИ ГОРИЗОНТАЛЬНОГО ПОЛЕТА.

ГРАФИК ПОТРЕБНЫХ И РАСПОЛАГАЕМЫХ МОЩНОСТЕЙ ДЛЯ РАЗЛИЧНЫХ ВЫСОТ

Воспользовавшись формулой (4.11), найдем зависимость потребной мощности от высоты полета. После преобразований получим

(4.15)

Где NН — потребная мощность горизонтального полета на заданной высоте Н;

N0— потребная мощность горизонтального полета у земли. Из формулы видно, что при неизменном угле атаки потребная для горизонтального полета мощность будет увеличиваться с высотой пропорционально

Рис. 7 Кривые потребных и располагаемых мощностей для различных высот полета

Рис. 8 Изменение характерных скоростей горизонтального полета с подъемом на высоту самолета с поршневой силовой установкой

Полет на наивыгоднейшем угле атаки и соответствующих ему максимальном качестве kМАКС и наивыгоднейшей скорости при увеличении высоты полета потребует увеличения потребной мощности, так как наивыгоднейшая скорость с поднятием на высоту растет пропорционально

Однако отношение для всех высот сохранится постоянным, потому что

(4.16)

Из этого следует, что кривые для различных высот полета будут иметь общую касательную, проведенную из начала координат (Рис. 7). Кривые располагаемых мощностей снимаются с характеристик двигательных установок с учетом КПД воздушного винта.

У самолетов с высотными поршневыми двигателями располагаемая мощность увеличивается до расчетной высоты, вследствие этого увеличивается и максимальная скорость полета. Выше расчетной высоты располагаемая мощность уменьшается, уменьшается и uмакс (Рис. 8). С увеличением высоты полета до расчетной увеличивается и избыток мощности. Дальнейшее увеличение высоты полета сопровождается уменьшением избытка мощности DN, который на потолке самолета обращается в нуль.

ВЛИЯНИЕ МАССЫ САМОЛЕТА НА ПОТРЕБНЫЕ СКОРОСТИ.

Удельная нагрузка на крыло в полете меняется в зависимости от количества горючего (его расхода).

Рассмотрим горизонтальный полет самолета Як-52 при изменении нагрузки, но при одинаковом угле атаки и на одной высоте.

Пусть полетный вес уменьшается, но условие горизонтального полета сохраняется (Y=G), поэтому соответственно необходимо уменьшить подъемную силу. Это можно выполнить либо уменьшением угла атаки, либо путем уменьшения скорости до величины V1.

Если известна потребная скорость V при расчетном весе G, то вычислить потребную скорость при новом весе можно по формуле

разделив второе выражение на первое и сократив, получим

(4.17)

Из формулы видно, что при уменьшении полетного веса потребная скорость уменьшается пропорционально квадратному корню отношения весов (плотность воздуха неизменна). При уменьшении веса на самолетах Як-52 и Як-55 потребная скорость горизонтального полета уменьшается.

Задача. Летчик выполняет перелет на высоте 500 м. Первоначальный полетный вес составлял 1240 кгс Скорость полета V=240 км/ч. К концу перелета израсходовано 80 кгс горючего. Какова величина необходимой скорости горизонтального полета при том же угле атаки и той же высоте полета.

Решение 1 Определим вес самолета без израсходованного горючего. Он составляет 1160 кгс.

2 Определим необходимую скорость для сохранения горизонтального полета по формуле (725)

Потребная скорость для сохранения горизонтального полета при том же угле атаки и при той же высоте полета составляет 225,6 км/ч.

Изменение полетного веса влияет также и на другие летные качества самолета. Рассматривая кривые потребных мощностей для разного веса самолета, можно сделать выводы:

при увеличении веса самолета его минимальная посадочная, экономическая и наивыгоднейшая скорости увеличиваются, максимальная скорость уменьшается по причине увеличения угла атаки, необходимого для поддержания веса самолета в горизонтальном полете;

с увеличением полетного веса диапазон скоростей уменьшается вследствие уменьшения максимальной скорости и увеличения экономической;

с увеличением полетного веса уменьшается потолок самолета вследствие уменьшения избытка мощности.

Анализируя вышесказанное, можно сделать вывод, что с увеличением полетного веса самолета его летные характеристики ухудшаются, а с уменьшением веса самолета — улучшаются.


источники:

http://www.evkova.org/reaktivnoe-dvizhenie-v-fizike

http://pandia.ru/text/78/071/7747.php