Уравнение скорости реакции углерода с кислородом

Основы кинетики химических реакций

Процесс горения характеризуется быстрым протеканием реакций окисления горючих компонентов топлива кислородом воздуха, при котором имеет место значительное тепловыделение и создается высокий уровень температуры. Реакции с выделением теплоты называются экзотермическими. Преимущественное тепловыделение при горении топлив определяется содержанием в топливе углерода. Горение углерода в основном характеризуется протеканием трех химических реакций:

полное окисление углерода кислородом с образованием диоксида углерода

С + О2 = СО2 + 409,1, МДж/моль;4.1

частичное окисление с выходом монооксида углерода

2С + О2 = 2СО + 2·123,3 МДж/моль;4.2

доокисление монооксида до диоксида в объеме около поверхности горения

2СО + О2 = 2СО2 + 2·285,8 МДж/моль.4.3

Реакции по уравнениям (4.1) и (4.2) являются гетерогенными, так как в реакции участвуют горючее и окислитель, находящиеся в разном фазовом состоянии: твердое горючее и газообразный окислитель-кислород. Реакция по уравнению (4.3) относится к гомогенной, так как здесь оба вещества, вступающие в реакцию, являются газообразными (возможны гомогенные реакции веществ в жидком состоянии).

В условиях высоких температур в ядре факела могут протекать реакции с поглощением теплоты, которые являются эндотермическими. К эндотермическим реакциям, например, относится реакция образования оксидов азота

N2 + О2 = 2NO — 180 кДж/моль,4.4

или восстановление диоксида углерода на раскаленной поверхности углерода при недостатке кислорода

С + СО2 = 2СО — 162,5 МДж/моль.4.5

Реакция является химически обратимой, если может идти как в прямом, так и в обратном направлении, однако внешние условия для протекания реакции в том или другом направлении могут существенно различаться. Так, реакция образования оксидов азота имеет место только в зоне высоких температур, а обратная реакция их разложения на газообразные кислород и азот протекает в земной атмосфере под действием солнечной радиации. При горении топлива в топочных камерах скорость прямого процесса окисления горючих кислородом несоизмеримо больше скорости обратного, поэтому химическое равновесие этих реакций смещено в сторону образования конечных продуктов, и в указанных условиях эти реакции можно считать необратимыми.

Однако всегда по мере роста концентрации продуктов в реакции и температуры в зоне горения находится в равновесии с конечными продуктами какое-то количество исходных веществ. Этот процесс связан с термической диссоциацией части образовавшихся продуктов сгорания. В топочных камерах при температуре горения выше 1600 °С подвергаются термической диссоциации в заметном количестве диоксид углерода СО2 и водяные пары Н2О

4.6

Таким образом, в зоне высоких температур горения всегда останется небольшое количество СО, Н2 и O2, догорание которых возможно при более низких температурах.

Интенсивность горения характеризуется скоростью реакции. Под скоростью гомогенной реакции понимается массовое количество вещества, реагирующее в единице объема и в единицу времени. Скорость реакции в этом случае измеряется по изменению концентрации одного из реагирующих веществ. Например, в реакции (4.3) средняя скорость реакции wр, моль/(м 3 ·с), за промежуток времени Δτ, с, имеет выражение

4.7

где ΔCCO — изменение концентрации СО в объеме, моль/м 3 .

Скорость гетерогенных реакций (4.1) и (4.2) КS, г/(м 2 ·с), выражается количеством углерода Δg, г, прореагировавшим с кислородом на единице поверхности контакта S, м 2 , в единицу времени Δτ, с:

4.8

Скорости реакций подчиняются закону действующих масс, согласно которому в однородной среде при постоянной температуре в каждый момент времени скорость реакции пропорциональна произведению концентраций реагирующих веществ с учетом числа молей. Так, для уравнения (4.3) скорость реакции составит

4.9

Здесь kР — константа скорости реакции, зависящая от температуры и химической природы реагирующих веществ.

В условиях гетерогенного горения концентрация горючего (твердого топлива) неизменна, поэтому скорость такой реакции на основе закона действующих масс будет зависеть только от концентрации окислителя (кислорода) у поверхности топлива

4.10

Здесь C ПОВ O2— концентрация кислорода у поверхности топлива. При неизменной концентрации реагирующих веществ во времени (постоянный подвод топлива и окислителя в зону горения) скорость реакции зависит от константы скорости реакции kР, 1/с, по закону Аррениуса

4.11

где k0 — предэкспоненциальный множитель, 1/с; Е — энергия активации, кДж/моль; R — универсальная газовая постоянная, кДж/(моль·К); Т — абсолютная температура процесса, К. Константа скорости реакции kр и энергия активации Е называются кинетическими константами реакции, которые определяют реакционные свойства топлива.

Химическая реакция может происходить при столкновении молекул, вступающих в реакцию веществ. Если бы все столкновения приводили к реакциям, то горение происходило бы с огромной скоростью и константа скорости равнялась бы k0. В действительности реакция может произойти только в том случае, когда за счет соударения произойдет разрушение старых молекулярных связей и образовавшиеся осколки молекул (заряженные радикалы) смогут перегруппироваться и создать молекулы новых веществ.

Энергия, достаточная для разрушения внутримолекулярных связей исходных веществ, называется энергией активации E. Так, при горении кокса по реакции (4.1) энергия активации зависит от вида кокса: для кокса бурого угля Е = 92…105 МДж/моль, для кокса каменных углей Е = 117…134 МДж/моль, для антрацита Е = 147 МДж/моль. В результате число молекул NE ,обладающих необходимым уровнем энергии Е, определяется статистическим законом Максвелла-Больцмана

4.12

где N0 — полное число молекул в единице объема. Энергия активации зависит не только от энергии межатомных связей в молекулах, но и от того, в каком состоянии находятся вступающие в реакцию вещества. При высоких температурах в зоне реакции за счет диссоциации молекул с более слабыми внутренними связями накапливается определенное количество заряженных частиц (радикалов) типа ОН — , Н + , О 2- , которые легко вступают в промежуточные реакции с исходными молекулами (такие реакции имеют низкие значения Е) и способствуют ускорению реакций горения.

На рис. 4.1 показана зависимость константы скорости kР и скорости реакции wР от определяющих факторов. Рост скорости химической реакции с температурой на известном уровне тормозится аэродинамическим фактором — возможностью доставки в зону горения окислителя (кислорода), определяемым скоростью диффузионного массообмена kД, который слабо зависит от температуры (рис. 4.1, а). Повышение энергии активации требует больше энергетических затрат на каждый акт реакции, что ведет к торможению скорости (рис. 4.1, б).

Рис. 4.1. Кинетические характеристики процесса горения: а — зависимость константы реакции горения kр и диффузионного массообмена kд от температуры; б — изменение скорости реакции wр от энергии активации Е; в — изменение скорости реакции при повышении концентрации горючего вещества Сгор в смеси с воздухом; НП, ВП — нижний и верхний пределы концентрации, соответствующие горению

В топочных устройствах происходит постоянная подача топлива и окислителя в зону горения, и, следовательно, в ядре горения сохраняется практически постоянная концентрация реагирующих веществ во времени. В этих условиях максимальная скорость реакции может быть достигнута при соотношении концентраций исходных веществ, близком к стехиометрическому, когда в результате реакции не остается избытка любого из них (рис. 4.1, в). При избытке горючего (богатая смесь) или при малой его концентрации (бедная смесь) скорость реакции снижается из-за уменьшения тепловыделения на единицу объема. Как видно, существует нижний предел концентрации горючего (НП), ниже которого горение становится невозможным, и верхний предел (ВП), когда дальнейшее увеличение концентрации горючего в смеси также прекращает горение. Во всем диапазоне концентраций между этими пределами горение возможно.

При сгорании горючей смеси в замкнутом объеме и отсутствии отвода теплоты в процессе реакции тепловыделение передается продуктам сгорания и приводит к максимальному повышению их температуры.

Этим условиям отвечает понятие теоретической (адиабатной) температуры горения ТТЕОРа. Наивысшее ее значение достигается при подводе окислителя в строгом соответствии с химической формулой (при стехиометрическом соотношении горючего и окислителя). Эту температуру часто называют жаропроизводительностью топлива.

В топочных устройствах всегда имеет место отвод теплоты из зоны реакции к поверхностям нагрева. С повышением температуры в зоне основного горения увеличивается и отвод теплоты, далее по мере выгорания топлива тепловыделение снижается, а вместе с ним происходит спад температуры продуктов сгорания, так как теплоотвод сохраняется достаточно высоким (рис. 4.2).

Рис. 4.2. Изменение температуры газов по высоте топки hт: hгор — высота расположения горелок

Температура смеси, начиная с которой система способна к самоускорению реакции до устойчивого горения, называется температурой воспламенения. Эта температура не является постоянной для реагирующих веществ и зависит от условий отвода теплоты из зоны реакции. Тепловыделение в ходе реакции горения топлива (при постоянной концентрации реагирующих веществ) определяется скоростью реакции в данных условиях и теплотой горения топлива

4.13

где mwР — скорость реакции по сгорающему топливу, кг/(м 3 ·с); Q Р Н -теплота горения топлива, кДж/кг.

Из (4.13) следует, что тепловыделение QР определяется только изменением скорости реакции wР. Скорость реакции, в свою очередь, зависит от константы диффузионного массообмена kД и константы химической реакции kР на поверхности топлива. При этом в области низких температур скорость реакции wР ограничивается константой kР, а в области высоких температур условиями массообмена у поверхности топлива константой kД. В итоге на графике кривая wР = f(T) имеет два перегиба (см. рис. 4.3).

Теплоотвод из зоны реакции в окружающую среду (к тепловоспринимающим поверхностям) выражается формулой

4.14

где α — коэффициент теплоотдачи, кВт/(м 2 ·К); FСТ — тепловоспринимающая поверхность, м 2 ; ТР, TСТ — температуры в зоне реакции и у поверхности стен, К.

Рис.4.3. Графическое определение температуры воспламенения ТВ, горения ТГ при разной интенсивности теплоотвода к стенам топки (Q02 > Q01): QР — тепловыделение в результате реакции горения; ТСТ — температура стен (экранов) топки. Из (4.14) следует, что при постоянстве условий отвода теплоты из зоны реакции (α = const) теплоотвод изменяется линейно в зависимости от разности температур TР — ТСТ.

На рис.4.3 показан характер изменения значений QР и Q0 от температуры. Точка 1 касания кривой QР и линии теплоотвода Q0 соответствует температуре воспламенения ТВ, так как при любом отклонении от нее значение QР> Q0 и происходит саморазогрев горючей смеси и рост тепловыделения за счет реакций окисления. Точка пересечения 3 кривой QР и линии Q0 характеризует наивысшее устойчивое тепловыделение, а соответствующая температура — температура горения ТГ3. Как видно на рис. 4.3, чем интенсивнее теплоотвод из зоны горения (круче наклон линии отвода 2-4, выше ТСТ2, так как α2 > α1), тем выше температура воспламенения топлива ТВ2 и ниже температура горения ТГ4.

Дата добавления: 2015-02-28 ; просмотров: 929 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Свойства углерода, его взаимодействие с кислородом

Механизмы реакций с O₂

Углерод — химический элемент, формирующий множество соединений органической и неорганической природы. Это главный биогенный элемент Земли, который присутствует в составе всех населяющих планету живых существ. Этот элемент может существовать в кардинально отличающихся по своим параметрам формах, состоящих исключительно из атомов углерода.

История открытия углерода и основные характеристики элемента

Углерод известен людям еще с древности, ведь каменный уголь — один из основных минералов в природе. Кроме угля, люди использовали графит и алмазы.

В 1725 году коммерческое значение приобрели драгоценные камни (алмазы), а в 1970 году люди освоили технологию получения алмазов искусственным путем. В 1779 году ученые приступают к исследованию химических свойств углерода, используя работы химика Карла Шееле. Так, им удалось сделать ряд важнейших открытий, которые послужили основой для выяснения всех уникальных особенностей химического элемента углерод.

В периодической системе Менделеева углерод располагается в 4 группе, главной подгруппе. Порядковый номер элемента — 6, атомный вес — 12,011. Элемент обозначается знаком «С» (от латинского car­boneum). Углерод существует в нескольких формах, по этой причине его формула бывает различна и зависит от конкретной модификации. Для написания уравнений реакций используется единственная молекулярная формула углерода, обозначающая вещество в чистом виде — С (без индексации).

Химическая активность углерода

Благодаря устойчивой конфигурации, молекулярный углерод проявляет низкую химическую активность. Вступить в реакцию углерод может, если сообщить атому дополнительную энергию и заставить распариться электроны внешнего уровня. В этот момент валентность элемента становится равной 4. По этой причине в соединениях углерод имеет степень окисления «+2», «+4», «-4».

Все реакции углерода с простыми веществами (металлами и неметаллами) протекают под воздействием высоких температур. Данный элемент может быть и окислителем, и восстановителем. Восстанавливающие свойства углерода выражены сильно, поэтому элемент используется в металлургической промышленности и других отраслях.

Способность углерода вступать в химические реакции зависит от таких факторов: температуры реакции, аллотропной модификации и дисперсности. Углерод взаимодействует с такими веществами: металлами (железом, алюминием, кальцием и другими), неметаллами (кислородом и водородом), оксидами металлов и их солями.

С щелочами и кислотами углерод в реакцию не вступает, очень редко он взаимодействует с галогенами. Одно из основных свойств углерода — способность элемента образовывать длинные цепи между собой. Цепи замыкаются в цикл, формируют разветвления — так образуются миллионы органических соединений. Их основой выступают два элемента — углерод и водород. В состав соединений могут входить другие атомы: азот, кислород, сера, фосфор, галогены, металлы.

Реакция углерода с кислородом

Взаимодействие кислорода и углерода нашло практическое применение в металлургической промышленности.

Генри Бессемер, английский инженер изобретатель, искал такой способ производства стали, который позволил бы исключить дорогостоящую стадию получения сварочного железа. Чтобы удалить из чугуна избыточный углерод, инженер пропускал струю воздуха через расплавленный металл. Металл при этом не затвердевал и не охлаждался. Даже наоборот: в результате реакции углерода с кислородом выделялось тепло, и температура расплава повышалась. Прекращая подачу воздуха в соответствующий момент, Бессемер получил сталь.

В механизме этой реакции основным вопросом являются первичные продукты реакции углерода с кислородом. Выдвигались теории, объясняющие, какие продукты реакции горения углерода являются первичными. Правильное экспериментальное решение вопроса о первичных продуктах реакции горения затрудняется процессами окисления окиси углерода в газовой фазе и восстановления двуокиси углерода. Для исключения влияния вторичных реакций применялись разные методы исследования: низкое давление, высокие скорости газа, ингибиторы и низкие температуры.

Сложная реакция углерода с кислородом, включающая последовательно-параллельные простые реакции, может быть описана двумя уравнениями скоростей, составленными по отношению к двум ключевым веществам. Из этого следует, что одна из констант реакций горения углерода (реакция С → СO₂), должна быть предварительно экспериментально определена.

В этом случае по двум кинетическим уравнениям скоростей расходования или образования ключевых веществ, по составу продуктов реакций легко вычисляются неизвестные константы остальных двух реакций. Здесь вы узнаете об основных свойствах углерода и областях его применения.

Значительная часть мировой потребности в энергии удовлетворяется реакциями углерода и углеродсодержащих материалов с газами: с кислородом, двуокисью углерода, водяным паром и водородом. Экзотермическая реакция углерода с кислородом была и есть основным источником энергии. Эндотермическая реакция углерода с водяным паром дает окись углерода и водород, которые употребляются как газовое топливо или как синтетический газ, который может быть каталитически превращен в углеводородные топлива или в другие органические соединения. Так как двуокись углерода — это первичный продукт реакции углерода с кислородом и вторичный продукт реакции углерода с водяным паром в реакции водяного газа, то вторичная реакция двуокиси углерода с углеродом в слое топлива тесно связана с основными реакциями углерода. В настоящее время реакция углерода с водородом с образованием метана не имеет промышленного значения, но ей принадлежит будущее.

Химическая кинетика. Скорость химических реакций

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

Факторы, влияющие на скорость химической реакции

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.

Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

2. Концентрация

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ . Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

закон действующих масс выглядит так:

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака:

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».

Например , при производстве серной кислоты методом «кипящего слоя» производят обжиг колчедана.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например , хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более активные вещества мы можем встретить в быту и природе сравнительно редко.

Например , оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.


источники:

http://melscience.com/RU-ru/articles/svojstva-ugleroda-ego-vzaimodejstvie-s-kislorodom/

http://chemege.ru/kinetika/