Уравнение смешанных дробей для 5 классов

Примеры работы со смешанными дробями (математика, 5 класс)

При решении задач ученики сталкиваются в математике 5 класса с примерами смешанных дробей, которые необходимо переводить в неправильные дробные тождества. Не зная соответствующего алгоритма, осуществить это действие невозможно. Кроме того, большинству не совсем понятна школьная программа. Специалисты, учитывая особенности головного мозга ребенка, разработали собственную методику.

Общие сведения

Смешанная дробь — число, состоящее из целого значения и обыкновенного дробного выражения. Они образуются в результате операции деления. Последняя состоит из трех элементов, а именно: делимого, делителя и частного. Чтобы понять смысл смешанного числа, нужно разобрать дробные величины. К ним относятся следующие виды:

Обыкновенная дробь образуется посредством комбинации делимого и делителя, т. е. состоит всего из двух элементов. В этом случае частное имеет вид десятичного дробного тождества. Иными словами, десятичная дробь — величина, полученная при делении числителя на знаменатель.

Обыкновенные дробные выражения бывают двух видов: правильными и неправильными. У первых величина числителя меньше знаменателя, а у вторых — наоборот. Десятичные дроби делятся на 3 типа: с фиксированным количеством знаков после запятой, бесконечные периодические и непериодические.

У периодических дробных величин после запятой математические символы повторяются через определенный период, который указывается в круглых скобках. Например, число 4,(3) читается следующим образом: четыре целых и три в периоде.

Если дробное тождество является непериодическим и бесконечным, обычно его необходимо округлять до какого-либо элемента или записывать в виде обыкновенной дроби.

Следует отметить, что бесконечные непериодические дробные выражения в их полном виде невозможно записать на листе бумаги, поскольку количество разрядов достигает бесконечности. Далее необходимо рассмотреть сокращение дробей, поскольку операция применяется для оптимизации конвертации неправильного дробного тождества в смешанное число.

Свойства дробей

Дроби, как и любые числовые выражения, обладают определенными свойствами. К ним относятся:

  1. Если от числителя отнять одно значение, а затем его прибавить, дробь не изменится, т. е. (Q+T-T)/Z=Q/Z.
  2. При умножении и делении на эквивалентное число величина дробного тождества не изменится, т. е. (Q*T)/(Z*Т)=Q/Z.

Первое утверждение проверить очень просто. Для этой цели нужно решить следующий пример, прибавив и отняв от числителя одно и то же значение: 7/8. Доказательство имеет такой вид:

  1. Записать дробь: 7/8.
  2. Взять произвольный коэффициент: 5.
  3. Отнять, а затем прибавить его к числителю: (7−5+5)/8.
  4. Числа «-5» и «5» являются противоположными. Их сумма равна 0, т. е. 5−5=0.
  5. Если прибавить нуль к любому числу, получится искомая величина: 5+0=5.
  6. Математические преобразования исходной дроби: (7−5+5)/8=[7-(5−5)]/8=(7+0)/8.
  7. Результат совпадает с искомым значением: 7/8=7/8.

Второе утверждение доказывается таким же простым способом на дроби ½. Для этого нужно решить пример (1*8)/(2*8) по следующему нестандартному алгоритму:

  1. Записать дробное тождество: ½.
  2. Коэффициент — общий множитель: 8. Последний необходимо представить в виде обыкновенной дроби: 8/8.
  3. Величина «8/8» эквивалентна единице, которую можно умножить на любое число без потери значения выражения.
  4. Расписать дробное значение: (½) * (8/8) = (½) * 1 = ½.
  5. Сравнить результат и исходное значение: ½ = ½.
  6. Утверждение доказано.

Некоторые ученики делают большую ошибку, отнимая (прибавляя) к числителю и знаменателю одну величину. Чтобы они не путали 2 утверждения сокращения, нужно привести пример и решить его:

  1. Вынесения общего множителя за скобки и сокращение на него.
  2. Формулы сокращенного умножения.
  3. Приведение подобных слагаемых.

Первое правило позволяет найти единый множитель всего дробного выражения. После этого его можно будет разделить на одно и то же число. Формулы сокращенного умножения применяются также для реализации первого правила. Суть метода заключается в использовании специальных соотношений. Например, математическое выражение «1−25t 2 » выглядит таким образом: (1−5t)(1+5t).

После раскрытия скобок реализовывается третье правило — приведение подобных слагаемых. Они группируются по наличию однотипных элементов. Например, выражение 4t-4+t+t 2 −3+2t 2 имеет следующие одинаковые компоненты, которые группируются в скобках: (2t 2 +t 2 )+(4t+t)-(4+3). Если приводить подобные элементы, выражение упрощается, т. е. 3t 2 +5t-7.

Действия над смешанными числами

Смешанное число — математическое выражение, в состав которого входят целая величина и обыкновенная правильная дробь. Например, 7[1/3] является смешанным, целая часть — 7 и дробная — 1/3. Последняя заключается в квадратные скобки. В смешанное выражение могут конвертироваться только целые числа и неправильные дроби.

Для каждого вида конвертации существует определенная методика. Специалисты предлагают только 2 алгоритма преобразования:

  1. Целого числа.
  2. Неправильной дроби.

В первом случае операция выполняется довольно просто. Однако начинающим математикам рекомендуется пока придерживаться методики. Неправильную дробь необходимо конвертировать по усложненному алгоритму при помощи специальной формулы. Последняя формирует новый числитель.

Представление целой величины

Необязательно исходным значением может быть неправильная дробь. Каждое целое число можно представить в виде смешанного при помощи такого алгоритма:

  1. Записать величину.
  2. Отнять от целой части единицу.
  3. Указать в скобках дробь — единичное значение.
  4. Написать результат.

Реализация методики выполняется на примере числа 7, которое нужно представить в смешанной форме. Операция выглядит таким образом:

  1. Записать число: 7.
  2. Величина без учета единицы: 6.
  3. Дробь: 2/2.
  4. Полная запись: 6[2/2].

Результат необходимо проверять. Для этого нужно умножить целую часть на знаменатель и прибавить числитель, т. е. (6*2+2)/2=14/2. Если выполнить операцию деления, получится исходное значение.

Конвертация неправильного дробного тождества

В случае конвертации числа, представленного в виде обыкновенной дроби, необходимо воспользоваться определенным алгоритмом. Он выглядит таким образом:

  1. Записать число смешанного типа.
  2. Выделить целую часть.
  3. Рассчитать «новый» числитель по формуле: Q’=Q-C*Z, где Q — искомая величина числителя, C — целое число и Z — знаменатель.
  4. Результат: Q’/Z.

Реализацию алгоритма нужно разобрать на примере «78/7» для закрепления теоретических знаний. Решать его нужно следующим образом:

  1. Записать значение: 78/7.
  2. Выделить целое значение (часть): 78/7=11.
  3. Найти величину нового числителя: 78−11*7=1, где 78 — числитель искомой неправильной дроби, 7 — ее знаменатель и 11 — целая часть.
  4. Написать результат: 11[1/7].

Специалисты рекомендуют на начальных этапах обучения четко следовать методике. Со временем надобность в ней исчезнет, поскольку операция преобразования будет выполняться на автоматизме. Далее необходимо разобрать алгоритм обратной конвертации.

Обратная операция

Для проверки правильности конвертации неправильной дроби в смешанное число или решения задач необходимо воспользоваться специальным алгоритмом. Он имеет следующий вид:

  1. Записать смешанное тождество.
  2. Вычислить величину нового числителя: Q=Q’+C*Z, где Q’ — исходная величина числителя, C — целое значение и Z — знаменатель.
  3. Записать результат: Q/Z.

Чтобы понять принцип работы алгоритма, необходимо разобрать пример 11[1/7]. Он должен решаться таким способом:

  1. Написать смешанное тождество: 11[1/7].
  2. Числитель: 11*7+1=78.
  3. Искомый результат: 78/7.

При помощи этого алгоритма можно осуществлять операцию преобразования в целое число.

Таким образом, смешанное число — вид дробного выражения, которое применяется при решении задач. Для его конвертации необходимо знать соответствующие методики.

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Как решать смешанные числа 5 класс. Дроби 5 класс вычитание и сложение смешанных чисел

    Примеры с целой частью и дробным остатком заставляют паниковать любого ребенка. На первый взгляд они совершенно непонятные. Изучая их, следует понять какие из них будут правильными, а какие нет. Так же необходимо научиться вынимать из дробей целые числа, делать перевод смешанных чисел.

    Смешанные числа объяснение 5 класс

    Дробь мы получаем при делении, когда в конце остается остаток.

    • Если не выделяется целое число, верхняя часть меньше нижней, значит мы получили правильную дробь.
    • Если выделяется целое и остаток, значит мы получили ответ со смешанным числом.

    В учебниках пятиклассник будет видеть следующие образцы смешанных чисел.

    Видео: «Математика 5 класс. Смешанные числа»

    Видеоурок: «Смешанные числа математика 5 класс»

    Правильные и неправильные дроби смешанные числа

    При решение определенного задания пятикласснику следует, в первую очередь, обратить внимание на запись дробей.

    Если нижние цифры под черточкой меньше верхних, значит, в данном примере мы имеем правильную дробь. Из нее нет возможности что-то выделить, так как она меньше целого числа.

    Если верхние цифры больше нижних, значит, в данном примере, мы имеем неправильную дробь. Которая при чтении ответа читается как смешанное число. В этот раз мы можем получить целое число с остатком.

    Видео: «Правильные и неправильные дроби»

    Видео: «Правильные и неправильные дроби примеры»

    Правила сложения и вычитания смешанных чисел

    При выполнении математических заданий, пятикласснику изначально необходимо будет из смешанного числа сделать неправильную дробь. После этого выполняется суммирование, либо вычитание.

    Если в задании будут два целых числа, а в дробном остатке одинаковый цифры снизу под черточкой, перевод можно не делать. Изначально суммируют или вычитают целые числа, а затем дробную часть.

    При решении заданий можно перевести число в неправильную дробь, затем суммировать. Завершающим этапом станет выделение целого числа и остатка.

    Задания с вычитанием так же могут быть выполнены в двух вариантах.

    Видео: «Сложение и вычитание смешанных чисел»

    Преобразование неправильной дроби в смешанное число

    Изо всех неправильных дробей в заданиях можно выделить целые числа и остаток. Для этого проводим следующее действие:

    Можно пойти другим путем, минуя столбик. Будем использовать умножение и вычитание.

    Видео: «Преобразование неправильной дроби в смешанную»

    Преобразование смешанного числа в неправильную дробь

    Для того, чтобы быстро и безошибочно разобраться с заданием, нужно провести преобразование.

    Имеет место более короткий вариант, без расписания многочисленных действий.

    Существует формула, которую необходимо выучить пятикласснику.

    Обозначение букв следующее:

    • «a» целое натуральное число.
    • «b» числитель.
    • «c» знаменатель.

    Видео: «Перевод смешанного числа в неправильную дробь»

    PS: Разложив по полочкам последовательность раскладывания дроби и из чего она состоит, ваш школьник без особых усилий сможет разобраться с любым заданием где есть дроби.


    источники:

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    http://luckclub.ru/kak-reshat-smeshannye-chisla-5-klass-drobi-5-klass-vychitanie-i-slozhenie-smeshannyh-chisel