Уравнение собственных затухающих колебаний в контуре

Затухающие колебания в контуре и их уравнение

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, — затухающие.

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:

m a = — k x — y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,

Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e — период времени уменьшения амплитуды в e раз.

Для R L C контура применима формула с ω частотой.

При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C — собственная частота, отсюда ω ≈ ω 0 .

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q = 1 R L C = ω 0 L R , где R , L и C — сопротивление, индуктивность, емкость, а ω 0 — частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q = R L C = R ω 0 L .

R является входным сопротивлением параллельного контура.

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.

Уравнения затухающих колебаний

Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.

Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .

Функция изображается аналогично рисунку 2 .

Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту — ω 0 .

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C — контуре:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение

Для нахождения I ( t ) :

I ( t ) = — ω 0 q 0 e ( — 2 β t ) sin ( ω t + α ) , где t g α = β ω .

Очевидно, что электрическая энергия W q запишется как:

W q = q 2 2 C = q 0 2 2 C e ( — 2 β t ) cos 2 ( ω t ) = W 0 e ( — 2 β t ) cos 2 ( ω t ) .

Тогда значение магнитной энергии контура W m равняется:

W m = L 2 ω 0 2 q 0 2 e ( — 2 β t ) sin 2 ω t + a = W 0 e — 2 β t sin 2 ω t + a .

Запись полной энергии будет иметь вид:

W = W q + W m = W 0 e ( — 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .

Где sin α = β ω 0 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( — 2 β t ) .

Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) . Энергия в контуре убывает по экспоненте.

Затухающие колебания в контуре и их уравнение

Вы будете перенаправлены на Автор24

Определение, характеристики затухающих колебаний

В реальном мире любые колебания в системе, где нет источника энергии, являются затухающими. Рассмотрим реальный контур, сопротивление которого отлично от нуля. Примером простейшей системы, которую рассматривают в таком случае может служить контур включают сопротивление $(R)$, конденсатор емкостью $C$, катушку индуктивности $L$, тогда такой контур имеет вид указанный на рис.1. Колебания в таком контуре являются затухающими.

Причиной затухания колебаний в таком контуре является наличие сопротивления. Его существование ведет к тому, что в контуре происходят потери энергии на выделение джоулева тепла. В механике аналогом сопротивления являются силы трения.

Затухающие колебания характеризуют коэффициентом затухания ($\beta $), равным:

Из выражения (1) видно, что $\beta $ является характеристикой контура. Иногда для характеристики затухания используют логарифмический декремент затухания ($\delta $), который равен:

где $a\left(t\right)$- амплитуда какой — либо величины (заряда, силы тока и т.д.). $\delta $ равен количеству колебаний ($N_e$) за время, в течение которого амплитуда уменьшается в e раз:

Для $RLC$ контура:

где $\omega $ — частота.

Если затухание небольшое ($\delta \ll 1$), то полагают, что $\beta \ll <\omega >_0$ ($<\omega >_0=\sqrt<\frac<1>>-собственнная\ частота$), тогда $\omega \approx <\omega >_0$. В таком случае:

Рассматривая затухающие колебания, колебательный контур характеризуют его добротностью ($O$). Он равен:

Для слабого затухания добротность можно выразить как:

Также при слабом затухании электрических колебаний добротность можно выразить через отношение энергий:

где $W$ — энергия контура, $\triangle W$- уменьшение энергии контура за одно колебание.

Готовые работы на аналогичную тему

Уравнение затухающих колебаний

Обратимся вновь к контуру, который изображен на рис.1. Изменение заряда ($q$) на конденсаторе в таком контуре описывается дифференциальным уравнением вида:

где $\omega =\sqrt<\frac<1>-\frac<4L^2>> \cdot \beta =\frac<2L>$. Амплитуда равна:

В том случае, если при $t=0$ заряд на конденсаторе равен $q_0$, тока в цепи нет, то для $A_0$ можно записать:

Начальная фаза колебаний ($<\alpha >_0$) равна:

При $R >2\sqrt<\frac>$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Сопротивление, при котором колебания превращаются в апериодический разряд конденсатора называется критическим ($R_k$). Величина $R_k$ определяют условием:

График функции (10) изображают как на рис.2.

Задание: Запишите закон убывания энергии, запасенной в контуре $(W(t))$, если $W(t=0)=W_0,$ колебания являются затухающими. Коэффициент затухания колебаний в контуре равен $\beta $. Собственная частота $<\omega >_0.\ $

Решение:

В качестве отправной точки для решения задачи используем уравнение изменения заряда на конденсаторе в $RLC$ -контуре в виде:

в выражении (1.1) мы предположили, что при $t=0,\ <<\alpha >‘>_0=0$. Используя выражение:

Найдем $I(t)$, получим:

Следовательно, электрическая энергия контура ($W_q$) имеет вид:

Магнитная энергия контура ($W_m$) равна:

Полная энергия равна:

Задание: Используя результат Примера 1, запишите выражение для энергии, запасенной в контуре ($W(t)$), если колебания затухают в контуре очень медленно. Изобразите график убывания энергии запасенной в контуре.

Решение:

Если колебания в контуре затухают медленно, то это значит:

Следовательно, выражение для энергии, запасенной в контуре:

можно преобразовать к виду:

Ответ: $W\left(t\right)=W_0e^<\left(-2\beta t\right)>$. Энергия контура убывает по экспоненте.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 26 04 2021

Собственные затухающие колебания

В реальных колебательных контурах омическое сопротивление всегда отлично от нуля. Вследствие этого энергия, первоначально запасенная в контуре, непрерывно расходуется на выделение теплоты, что приводит к затуханию собственных колебаний.

Найдем дифференциальное уравнение затухающих колебаний. Для этого рассмотрим контур, содержащий, кроме индуктивности L и емкости С, омическое сопротивление R . Зарядим конденсатор до напряжения U0 , затем цепь замкнем. При разрядке конденсатора в цепи возникнет ток i , изменяющийся со временем. На основании второго закона Кирхгофа для данного контура можно записать

.

В этом выражении сделаем замену величинUc, i :

.

.

Разделив левую и правую части на L и обозначив

2b , ,

получим дифференциальное уравнение собственных затухающих колебаний

w0 2 q = 0. (7)

Решением этого уравнения является колебание вида

q = q0 e b t cos (w + j ), (8)

где (w + j ) — фаза колебаний, j— начальная фаза колебаний, q0 e b t — амплитуда колебаний ,w— циклическая частота затухающих колебаний, численно равная числу полных колебаний, совершаемых системой за 2p секунд.

не является постоянной величиной, а с течением времени непрерывно убывает. Быстрота убывания амплитуды колебаний определяется коэффициентом затухания

b = ,

который численно равен обратной величине времени, в течение которого амплитуда колебаний убывает в е раз.

Для количественной характеристики затухания колебаний пользуются логарифмическим декрементом затухания d, который равен натуральному логарифму отношения двух последовательных амплитуд, отличающихся по времени на один период:

d=ln .

Циклическая частота собственных затухающих колебаний w связана с частотой собственных незатухающих колебаний w0 соотношением

. (9)

Период затухающих колебаний равен

(10)

Из (9) и (10) видно, что для собственных затухающих колебаний циклическая частота меньше, а период больше соответствующих частоты и периода собственных незатухающих колебаний. С увеличением сопротивления контура R период собственных колебаний возрастает и при выполнении условия

,

,

обращается в бесконечность. Это сопротивление называется критическим. Оно зависит от величины емкости и индуктивности. Если сопротивление контура превышает Rк ,то электрические колебания не возникают и заряд конденсатора уменьшается монотонно, асимптотически приближаясь к нулю. Такой разряд конденсатора называется апериодическим.

Наряду с зарядом, напряжение на обкладках конденсатора и сила тока в цепи тоже совершают затухающие колебания с тем же периодом. Напряжение и ток будут изменяться по следующим законам:

(11)

Путем преобразований выражение (11) можно привести к виду:

a- сдвиг фаз тока и напряжения.

Колебательный контур характеризуется добротностью Q , которая вычисляется по формуле

. (12)

Экспериментально добротность может быть найдена по затуханию как отношение числа p к логарифмическому декременту затухания:

. (13)

В данной работе требуется изучить зависимость периода Т и добротности Q линейного колебательного контура от его параметров L, C, R.

Описание установки

Для наблюдения свободных электрических колебаний используется установка, изображенная на рис.3.

Установка состоит из генератора прямоугольных импульсов Г, регулируемого сопротивления R, индуктивности L, регулируемого конденсатора С, индуктивности L1 и осциллографа О. Осциллограф служит для записи осциллограммы напряжения.


источники:

http://spravochnick.ru/fizika/elektromagnitnye_kolebaniya/zatuhayuschie_kolebaniya_v_konture_i_ih_uravnenie/

http://helpiks.org/7-84602.html