Уравнение сохранения энергии для газа

Тема № 4: Основные уравнения газового потока в лопаточных машинах

Преобразование энергии расширения рабочего тела в энергию вращения ротора происходит в результате обтекания потоком неподвижных сопловых и рабочих решеток.

Законы течения сжимаемой жидкости имеют большое значение для изучения процессов, происходящих в ступени.

Теория лопаточных машин базируется на основных уравнениях движения газа: уравнении неразрывности, уравнении сохранения энергии, уравнении первого закона термодинамики, уравнении Бернулли и уравнениях Эйлера. Эти уравнения рассматриваются в курсе термодинамики. Здесь остановимся лишь на некоторых особенностях этих уравнений, которые связаны с их использованием в расчетах лопаточных машин. Уравнение Эйлера о количестве движения применительно к ступени турбины будет рассмотрено ниже.

Реальное течение рабочего тела в ступени турбомашины является пространственным периодически неустановившимся течением вязкого сжимаемого газа, математическое исследование которого в строгой постановке затруднительно. Для получения относительно простых уравнений, которые можно без труда использовать в инженерных расчетах, делаются некоторые упрощения:

1) рассматривают осредненные значения параметров в точке (стационарность);

2) во всех сечениях каждой ступени неизменными.

Указанные допущения означают, что число лопаток СА и РК бесконечно.

Уравнение неразрывности в случае установившегося течения формулируется следующим образом: секундный массовый расход газа через любое поперечное сечение элементарной струйки при установившемся течении сохраняется постоянным (см. рис. 4.1).

Рис. 4.1. К выводу уравнения неразрывности

Если в рассматриваемых сечениях элемента двигателя поток является равномерным или рассматриваются осредненные параметры газового потока в этих сечениях, то уравнение неразрывности с равным основанием может быть записано и для всего потока. В частности, для сечений, нормальных к оси потока:

. (2.1)

В общем случае, когда выбранное сечение не перпендикулярно к оси струйки, а составляет с ней некий угол , нужно рассматривать нормальную составляющую скорости в этом сечении (т. е. в применении к теории ступени турбомашин – осевую составляющую скорости ), а уравнение неразрывности записывается в виде:

. (2.2)

Уравнение первого закона термодинамики

Уравнением первого закона термодинамики пользуются для определения параметров состояния газа при осуществлении термодинамического процесса. Оно является частным выражением закона сохранения энергии для элементарного объема газа, написанным в системе координат, движущейся вместе с рассматриваемым элементом объема или, в частном случае, для покоящегося газа.

Для элементарного объема газа уравнение первого закона термодинамики имеет вид:

, (2.7)

т. е. все тепло, подведенное к рассматриваемому объему газа, идет на изменение внутренней энергии и на совершение работы против сил давления, связанной с изменением объема.

Для движущегося газа удобно вместо внутренней энергии пользоваться понятием энтальпии:

. (1.8)

Переходя к интегральной форме записи, с учетом того, что тепло трения эквивалентно работе сил трения , можно получить:

, (1.9)

т. е. все тепло, подводимое к потоку между сечениями 1–1 и 2–2 (рис. 2.2), состоящее из тепла, подводимого извне, и тепла, выделяющегося в результате трения (работы сил трения), идет на совершение работы сжатия (расширения) и на изменение внутренней энергии потока ( ).

Уравнение первого закона термодинамики удобно для определения работы сил трения по известному значению показателя политропы , который легко определяется по термодинамическим соотношениям, если известны параметры потока в начале и в конце процесса.

Обобщенное уравнение Бернулли

Основным уравнением, на котором строятся расчеты турбомашин, является уравнение Бернулли:

. (2.10)

Уравнение (2.10) можно трактовать так: подведенная извне энергия идет на работу сжатия (расширения) газа , приращение кинетической энергии и преодоление гидравлического сопротивления .

Заметим, что уравнение Бернулли не зависит от теплообмена с окружающей средой. Однако теплообмен оказывает косвенное влияние на показатель политропы процесса.

Уравнение Бернулли, как и уравнение сохранения энергии, можно отнести к энергетическим и получить его из рассмотрения баланса механической энергии.

При свободном движении идеального газа, при отсутствии энергии, подведенной извне и потерь на преодоление гидравлического сопротивления:

. (1.11)

Для идеальной несжимаемой жидкости, для которой :

, (1.12)

т. е. для повышения давления в компрессоре динамического действия необходимо затормозить поток.

Самый простой способ достичь этого – геометрическое воздействие:

, (1.13)

Таким образом, при дозвуковом потоке ( ) расширение канала приводит к снижению скорости потока. На замедляющийся поток набегают следующие молекулы, что приводит к снижению удельного объема (увеличению плотности), т. е. давление газа растет.

Можно сделать вывод, что рабочий процесс турбокомпрессора состоит из двух взаимосвязанных, одновременно протекающих процессов:

— приращения кинетической энергии за счет подводимой внешней работы (от турбины) ;

— преобразования кинетической энергии потока в энергию потенциальную , пропорциональную давлению.

Уравнение сохранения энергии

Полная энергия рабочего тела может быть записана в виде:

,

где — внутренняя энергия; P/r – потенциальная энергия давления; С 2 /2 – кинетическая энергия; — потенциальная энергия положения.

Данное выражение можно упростить.

Потенциальной энергией положения можно пренебречь, т.к. по сравнению с остальными слагаемыми она ничтожна.

Внутренняя энергия рабочего тела в сумме с потенциальной энергией давления P/r будут равны энтальпии рабочего тела h, которая, таким образом, является мерой той потенциальной энергии, которой обладает поток рабочего тела.

В этом случае уравнение полной энергии запишется в виде:

.

Уравнение сохранения энергии может быть сформулировано следующим образом: полная энергия газового потока на выходе из рассматриваемого элемента (рис. 4.2) больше (или меньше) полной его энергии на входе на величину энергии, подведенной (или отведенной) между рассматриваемыми сечениями :

.

Рис. 4.2. К выводу уравнения сохранения энергии

Поскольку при установившемся движении газа расходы через сечения 0–0 и 1–1 одинаковы, то все члены уравнения сохранения энергии принято представлять отнесенными к 1 кг газа.

Применительно к турбомашинам уравнение сохранения энергии можно записать в виде:

, (2.3)

где – энтальпия газа (отвечает за внутреннюю и потенциальную энергию потока), с 2 /2 – кинетическая энергия потока; и – внешняя подведенная (отведенная) энергия, в виде механической работы и в виде тепла соответственно.

Для элементов двигателя, в которых отсутствует подвод или отвод энергии, уравнение сохранения энергии в частном случае имеет вид:

, (2.4)

т. е. при отсутствии энергообмена полная энергия газового потока сохраняется неизменной и равна энтальпии заторможенного потока.

Запишем уравнение сохранения энергии для турбинной ступени (см. рис. 2.1). Теплообменом с окружающей средой при этом можно пренебречь, т.к. при относительно небольших площадях теплоотдачи и хорошей теплоизоляции коэффициенты теплоотдачи малы.

Обычно для турбинной ступени , поэтому

,

т.е. работа турбинной ступени фактически численно равна изменению энтальпии потока.

Заметим, что в различные записи уравнения сохранения энергии в явном виде не входит трение, а значит, это уравнение применимо как для идеального газа, так и газа, обладающего вязкостью.

Силы трения, которые возникают на стенках, ограничивающих поток газа, и силы внутреннего трения между отдельными струйками газа являются внутренними силами, а работа на их преодоление переходит практически полностью в тепло. Трение приводит лишь к преобразованию одного вида энергии в другой и не отражается на общем балансе энергии. Например, если вследствие трения уменьшается кинетическая энергия, то энтальпия в этом сечении вырастет на ту же величину.

Дата добавления: 2015-06-17 ; просмотров: 3788 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Закон Бернулли как следствие закона сохранения энергии

Разделы: Физика

Цели урока:

  • Изучить частный случай закона сохранения энергии в применении к объяснению зависимости давления от скорости движения жидкости и газа;
  • Сформулировать закон Бернулли;
  • Рассмотреть примеры его применения и проявления на практике.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, презентация к уроку.

Оборудование для демонстраций: весы, макет крыла самолета, небольшая воронка, теннисный шарик, воздуходувка (фен), демонстрационный манометр, таблички на магнитах с физическими формулами.

Оборудование для практических работ: стакан с водой, одноразовый шприц, два листа бумаги, бруски.

I. Организационный момент.

Тема, скорее название, нашего урока звучит не совсем обычно. Может быть кто-то из вас подумал: причем здесь физика? А действительно, причем здесь физика? А это и предстоит нам выяснить сегодня. В конце урока вы должны будете сами сформулировать правильно “физическую” тему. Я же скажу только, что эти объекты объединены одним и тем же законом, а именно, законом сохранения полной механической энергии. Работать вы будете на рабочих картах (приложение 1). Напишите свою фамилию на карте в правом верхнем углу.

II. Актуализация знаний.

Итак, начинаем. Раз уж я упомянула закон сохранения механической энергии, то давайте его вспомним.

1. Что утверждает закон сохранения полной механической энергии?
2. Что называется полной механической энергией?
3. Какая энергия называется кинетической? По какой формуле рассчитывается?
4. Какая энергия называется потенциальной? Формулы потенциальной энергии.

III. Основная часть. Изучение нового материала.

Сегодня на уроке мы будем говорить о применении закона сохранения для движущихся потоков жидкостей и газов. Движение жидкостей и газов разделяется на ламинарное и турбулентное. На дидактических картах (приложение 2) у вас есть их определения. Давайте прочитаем. Мы будем рассматривать ламинарное течение.

А начнем мы с вопроса: можно ли удержать шарик в вертикальной воронке, выдувая из нее воздух? Хорошо, давайте проверим это на опыте. Критерием любой истины является опыт. Мне нужен помощник, который выполнит этот несложный эксперимент. Оказывается, чтобы удержать шарик в воронке надо выдувать воздух. Кто же может объяснить этот “парадокс”? Тогда запишем первый вопрос в таблицу на рабочей карте. Почему при выдувании воздуха из воронки шарик удерживается в ней?

Продолжаем отвечать на вопросы. Что произойдет с листом бумаги, если подуть над ним? Расположите лист бумаги на уровне рта и с силой продуйте воздух. Что произошло с листом бумаги? А почему? Запишите в таблицу на рабочих картах и этот вопрос: почему поднялся листок?

Проведем еще один опыт. Наберите в шприц воды из стакана и, надавливая на поршень, выпустите ее (добейтесь, чтобы она вытекала непрерывной струёй). Сначала выполняет товарищ по парте, а сосед наблюдает. Потом поменяйтесь ролями. Обратите внимание на толщину вытекающей струи. Струя становится уже. А теперь надо объяснить увиденное. Есть какие-то предположения? Записываем в таблицу второй вопрос: почему струя вытекающей воды становится уже? К этим вопросам мы вернемся попозже.

Что ж, вопросов, наверно, пока достаточно. Пора искать ответы. Поможет в этом известный вам закон сохранения механической энергии и неизвестный пока закон Бернулли.

Рассмотрим ламинарное течение жидкости по трубе разного сечения. Посмотрите на слайд. Там, где сечение не меняется скорость тоже остается постоянной. Но одинакова ли скорость течения жидкости на различных участках? И где больше? А может кто-нибудь объяснить почему? (Так как жидкость несжимаема, то за одинаковый промежуток времени t через каждое из этих сечений должна пройти жидкость одного и того же объема. Но как жидкость, протекающая через первое сечение может “успеть” за то же время протечь через значительно меньшее сечение ? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких).

Покажите на рисунке 1 в рабочих картах векторы скоростей в различных участках. А теперь проверим как это получилось у меня (слайд). Значит, скорость зависит от сечения. Более того, зависимость эта обратно пропорциональна. Математически это выражается следующим соотношением, которое носит название уравнения неразрывности струи: VS= const, здесь – V скорость жидкости, S – площадь сечения трубы, по которой течет жидкость. Сформулировать этот закон можно так: сколько вливается жидкости в трубу, столько должно и выливаться, если условия течения не изменяются. Скорость в узких участках трубы должна быть выше, чем в широких.

Отсюда следует, что

Вывод: чем меньше площадь сечения, тем больше скорость.

Задача №1. Как и во сколько раз изменится кинетическая энергии жидкости, если сечение трубы уменьшить в 2 раза? (Ответ увеличится в 4 раза). А потенциальная энергия? Осторожно, ошибка!

Потенциальная энергия уменьшится, но необязательно в 4 раза!

(Например: 100 = 100, 100 = 10 + 90, 100 = 40 + 60)

С вопросом о скорости вы справились хорошо. А что скажете о давлении воды в разных частях? Если изменяется, то как? На рисунке 2 отметьте уровень воды в вертикальных трубках в зависимости от давления жидкости в горизонтальной трубе. А теперь посмотрим, на этот слайд . В узких местах трубы высота столбика жидкости меньше, чем в широких. О чем говорит разная высота воды? Оказывается, в узких местах трубы давление жидкости меньше, чем в широких. А почему?

При переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии. Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия “mgh”, потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости. Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем. Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы.

Чтобы разобраться в причинах уменьшения давления в узких частях и увеличения в широких, используем закон сохранения энергии и математические навыки. Я начну, а вы будете помогать.

Работа сил давления, совершенная над элементом жидкости при его перемещении, равна:

здесь =V1 и =V 2 – объемы жидкости, прошедшей за одно и тоже время через сечения 1 и 2. Подставим (2) в (1) и получаем:

Так как высота центра масс трубы не меняется, то h1 = h 2 . Выберем нулевой уровень, проходящий через центр масс, тогда mgh 1 = mgh2 = 0.

Так как жидкость практически несжимаема, то объемы ее, прошедшие за одно и тоже время равны, V1 = V 2 (или ), поэтому обе части равенства можно разделить обе части на V.

(*)

Таким образом, если скорость, например, увеличивается, то увеличивается первое слагаемое, значит, чтобы равенство выполнялось, на такую же величину второе слагаемое уменьшается, т.е. уменьшается давление.

Вывод: Чем больше скорость потока жидкости, тем меньше ее давление.

Зависимость давления от скорости течения называют эффектом, а уравнение (*) – законом Бернулли в честь автора, швейцарского ученого Даниила Бернулли, который, кстати, работал в С.Петербурге. Закон Бернулли для ламинарных потоков жидкости и газов является следствием закона сохранения энергии.

Убедимся на опыте, что полученный вывод справедлив и для газов. Для этого выполним еще практические задания (описание на дидактической карте).

1 Вариант. Возьмите в руки два листка бумаги и расположите их на расстоянии3– 4см друг от друга и продуйте несильно между ними воздух. Что наблюдаем? Почему? Между листочками давление уменьшилось, а снаружи осталось таким же. Повторите опыт, но подуйте теперь сильнее. Объясните этот результат.

2 Вариант. Положите листок на две книги, как показано на слайде. Продуйте воздух под листком сначала несильно, а потом сильнее. Объясните, что вы наблюдали.

Настало время для ответов на оставленные вами, но не забытые мною вопросы:

  • Почему при выдувании воздуха из воронки шарик удерживается в ней?
  • Почему поднялся листок?
  • Почему струя вытекающей воды становится уже?

Запишите ответы в таблицы.

Вот и настала очередь самолетов. Посмотрим видеофрагмент (Приложение 4).

Так почему же поднимается самолет? В чем причина возникновения подъемной силы?

Все дело в форме крыла и в угле атаки.

Убедимся на опыте (рисунок 1). Почему нарушилось равновесие весов?

Кстати сказать, у птиц крыло тоже имеет похожую форму.

Эффект Бернулли — это то, благодаря чему птицы и самолеты могут летать. Разрез крыла у них практически одинаковый: за счет сложной формы крыла создается разница обтекающих его сверху и снизу воздушных потоков, что позволяет телу подниматься вверх.

Формулу для расчета подъемной силы впервые получил наш соотечественник Николай Егорович Жуковский – “отец русской авиации”.

Что касается белок – летяг, то они, конечно же не могут развить большую скорость и форма “крыльев” немножко другая, поэтому и подъемная сила у них невелика и возникает она в большой степени из-за угла наклона. Как и обычная белка, летяга большую часть жизни проводит на деревьях, но на землю спускается гораздо реже. Между передними и задними лапами у неё имеется кожная перепонка, которая позволяет планировать с дерева на дерево. Так белка-летяга преодолевает расстояние до 50–60 м по нисходящей параболической кривой. Для прыжка летяга забирается на верхушку дерева. Во время полёта её передние конечности широко расставлены, а задние прижаты к хвосту, образуя характерный треугольный силуэт. Меняя натяжение перепонки, летяга маневрирует, иногда изменяя направление полёта на 90°. Хвост в основном выполняет роль тормоза. Посадку на ствол дерева летяга обычно совершает по касательной, как бы сбоку. Перед посадкой принимает вертикальное положение и цепляется всеми четырьмя лапами, после чего сразу перебегает на другую сторону ствола. Этот маневр помогает ей уворачиваться от пернатых хищников.

Задача№2: В полете давление воздуха под крылом самолета 97,8 кН/м 2 , а над крылом 96,8 кН/м 2 . Площадь крыла 20 м 2 . Определить подъемную силу.

Решение: F = PS, где P = P2 – P 1, тогда F = ( P2 – P 1)S, F =20 . 10 3 H

Задача №3. О “крученых мячах” вы прочитаете самостоятельно текст и ответьте на вопросы.

Эффект Магнуса.

  1. Почему движущиеся вращающиеся тела отклоняются от прямолинейной траектории?
  2. Почему давление на мяч с разных сторон различно?
  3. Почему относительная скорость воздушного потока различна по разные стороны мяча?

Можно привести еще множество примеров: бумеранг, летающие тарелки, водоструйный насос, распылители, карбюраторы, катера на подводных крыльях.

А вот посмотрите, какую опасность представляет уменьшение давления для морских судов. Поток воды между судами имеет меньшее давление, чем снаружи. Все моряки знают, что два судна, идущих рядом на больших скоростях сильно притягиваются друг к другу. Еще опаснее, когда один корабль идет за другим. Силы притяжения, возникшие из-за разности давлений, стремятся корабли развернуть . Задний корабль разворачивается сильнее переднего. Столкновение в таких случаях неизбежно.

Задача №4. Очень часто лоцманы жалуются на коварные мели, которые так и притягивают к себе суда. Почему мели на реках притягивают суда?

IV. Закрепление изученного материала

1. Жидкость течет через трубу с переменным поперечным сечением. В каком сечении трубы скорость “v” течения жидкости и ее давление “P” на стенках максимальна?

    v и P максимальны в сечении 1;
  • v и P максимальны в сечении 2;
  • v максимальны в сечении 1, P – в сечении 2;
  • v максимальны в сечении 2, P – в сечении 1;
  • v и P одинаковы во всех сечениях.

2. В какой трубке уровень воды будет выше?

3. Что произойдет, если продувать струю воздуха между двумя шариками от пинг-понга, подвешенными на нитях (смотри рисунок)?

  • Останутся неподвижными;
  • Будут двигаться вместе вправо или влево;
  • Отклонятся друг от друга;
  • Приблизятся друг к другу.

Подводя итог нашего урока, вспомним еще раз основные законы и уравнения, с которыми познакомились на уроке:

  1. Уравнение неразрывности струи – какую зависимость и каких величин оно выражает?
  2. Закон Бернулли – что он утверждает?

V. Рефлексия . Подведение итогов урока.

А теперь настало время дать нашему уроку “физическое” название. Какие будут ваши предложения?

Закон Бернулли как следствие закона сохранения энергии. (Проявление и применение закона сохранения энергии для движущихся потоков жидкости и газов).

VI. Домашнее задание.

Домашнее задание:

  1. Задачи № 404, 406, 409, 410 (Рымкевич А.П. Физика. Задачник. 10-11 классы.- М.: Дрофа, 2003)
  2. Домашняя практическая работа: Сделайте из тонкой бумаги цилиндр диаметром 3 см, длиной 20 см. Положите его на стол на наклонную плоскость. Пронаблюдайте за траекторией, по которой скатывается цилиндр. Объясните наблюдаемое явление.

Уравнение сохранения энергии для стационарного поточного процесса

Большое значение в газовой динамике имеет закон сохранения энергии. Он, как известно, констатирует тот факт, что

энергия не возникает и не исчезает, а только превращается

из одного вида в другой.

Следовательно, составив баланс энергии для какого-нибудь количества газа, например, для единицы массы, можно найти соотношение между различными составляющими энергии. Такая математическая запись энергетического баланса и представляет собой уравнение энергии.

Составление баланса энергии рассмотрим на примере газотурбинной установки, схема которой изображена на рисунке 6.Баланс энергии можно составить и для любой другой схемы течения. Пример с газотурбинной установкой взят потому, что в нем присутствуют все составляющие энергетического баланса, рассматриваемые в большинстве подобных газодина­ми­ческих задач. Кроме того, это типичный пример так называемого поточного процесса. Конечно же реальный процесс течения газа в газотурбинной установке не является стационарным в полном смысле этого понятия, но при известной степени идеализации в контексте решаемой задачи он вполне может рассматриваться как «квазистационарный».

Через входное сечение 1 воздух из атмосферы поступает в компрессор, где сжимается и подается в камеру сгорания. Туда же, в камеру сгорания, поступает жидкое топливо, которое, смешавшись с воздухом, сгорает, выделяя большое количество тепла. Таким образом, в турбину из камеры сгорания поступают образовавшиеся там продукты сгорания с высокой температурой и высоким давлением. В турбине они расширяются, производя работу — вращая ротор. Часть работы турбины при помощи вала передается на вращение компрессора, другая часть отдается потребителю. Отработанные газы покидают турбину, выходя через сечение 2.

Параметры воздуха на входе в газотурбинную установку — T1, p1, ρ1,,w1;

Энергия поступающего воздуха, отнесенная к единице массы, обозначена Е1 , энергия выходящего газа — Е2.

Подведенное тепло обозначено Qе. Индекс «е» означает, что тепло подводилосьизвне (externusлат. внешний, посторонний).

Здесь нет никакого противоречия: несмотря на то, что сгорание происходило внутри камеры и тепло, подогревающее газ, выделялось именно там, энергия эта была внесена снаружи в скрытом виде, вместе с топливом. Следовательно, поскольку не ставится задача изучения физико-химических процессов горения, а рассматриваются только явления газодинамического характера, то можно считать, что тепло в количестве Qе было внесено в камеру сгорания снаружи.

Работа на валу установки, отданная потребителю, обозначена L. Она также отнесена к единице массы проходящего через установку воздуха.

На рисунке 7 изображена упрощенная схема течения. На расчетном участке между сечениями 1 и 2, так же как и в предыдущем случае, подводится тепло и отводится механическая работа. Следовательно, для упрощенной схемы баланс энергии будет таким же, как и для газотурбинной установки, но пользоваться этой схемой проще и удобнее.

Баланс энергии для рассматриваемой схемы течения можно записать следующим уравнением:

Далее необходимо расшифровать, что подразумевается под полным запасом энергии единицы массы газа Е. При этом нужно иметь в виду, что в «полный запас энергии» нет надобности включать все ее составляющие (например, химическую, электрическую, внутриядерную); вполне достаточно принимать в расчет только те ее виды, которые могут превращаться один в другой в пределах изучаемых газодинамических задач. Тогда можно записать, что

E= u + p/ρ + w 2 /2 + gz, (2.2)

где u – внутренняя энергия единицы массы газа;

p/ρпотенциальная энергия давления единицы массы газа;

w 2 /2кинетическая энергия единицы массы газа;

gz– потенциальная энергия положения (уровня) единицы массы газа;

zгеометрическая высота;

g – ускорение силы тяжести.

Все указанные величины измеряются в единицах работы на единицу массы, а именно в дж/кг или, что то же самое, в м 2 /сек 2 (в системе СИ).

Подставив в уравнение (2.1) значения Е1 и Е2, выраженные с помощью уравнения (2.2), и учитывая, что разность внутренних энергий u1 – u2 = Cv(T12), получим

Это и есть уравнение энергии для одномерного потока или для элементарной струйки. Оно показывает, как происходит изменение внутренней энергии Cv(T12), потенциальной энергии давления p11-p22 , кинетической энергии (w1 2 — w2 2 )/2, потенциальной энергии положения g(z1-z2) в результате действия подведенного извне тепла Qе и работы L , отданной газом внешнему потребителю. Изменение внутренней энергии связано с изменением температуры газа, кинетической энергии — с изменением скорости потока, потенциальной энергии уровня — с изменением высоты положения рассматриваемой массы газа над плоскостью, принятой за начало отсчета. Что касается изменения потенциальной энергии давления, то оно требует специальных разъяснений.

На рисунке 8 изображен расчетный участок потока, ограниченный на входе сечением 1 и на выходе — сечением 2.

При входе газа через сечение 1 силы внешнего давления р1F1, вталкивая в расчетный, участок объем газа F1Δx1, совершают работу p1F1Δx1.

При выходе из расчетного участка, через сечение 2 объем газа F2Δx2 совершает работу против сил внешнего давления p2F2Δх2. Поделив эти работы на массу газа в соответствующих объемах, получим

Следовательно, p11-p22=Lвт-Lвыт представляет собой разницу работ вталкивания и выталкивания единицы массы газа. Эта величина характеризует накопление (если p11>p22) потенциальной энергии давления или расходование ее (если p11

Изменение потенциальной энергии уровня g(z1-z2) в задачах, связанных с расчетом теплоэнергетических машин или установок, как правило, составляет пренебрежимо малую величину по сравнению с другими членами уравнения энергии. Оно обычно не превышает 50…100 м 2 /сек 2 , тогда как другие члены имеют порядок 10 000…100 000 м 2 /сек 2 . Поэтому во всех дальнейших рассуждениях и расчетах величина g(z1-z2) будет отброшена. Однако, нужно обратить внимание на задачи такого рода, как расчет вентиляционных систем шахт, в которых изменение потенциальной энергии уровня весьма велико и может превышать значения других членов уравнения энергии. В этих случаях величина g(z1-z2) должна учитываться обязательно.

Уравнению энергии можно придать другую, во многих случаях более удобную для расчетов форму. Преобразуем сумму членов

используя известное из термодинамики соотношение Cp–Cv=R, и подставим полученное выражение в уравнение (2.3). Тогда уравнение энергии можно записать более компактно

а главное, тритермодинамических параметра p, ρ и Tтеперь можно заменить всего лишь однимэнтальпией h=CрТ. («Три в одном»!)

Этот вид уравнения энергии называют еще уравнением энтальпии или теплосодержания, так как в него входит энтальпия h.

В уравнении энергии принято следующее правило знаков. Подведенное внешнее тепло считается положительным, а отведенное — отрицательным; работа, совершенная газом и отведенная к внешнему потребителю, — положительной, а подведенная к газу извне и затраченная на его сжатие — отрицательной. Таким образом, в нагревателе газа (камере сгорания) тепло считается положительным, в охладителеотрицательным; работа, получаемая в турбине, — положительной, а затрачиваемая на вращение компрессораотрицательной. Это правило знаков согласуется с уравнением первого закона термодинамики.

Уравнение энергии часто применяется в дифференциальной форме. Чтобы получить его в этой форме, воспользуемся таким приемом. Будем мысленно приближать второе сечение к первому, уменьшая длину расчетного участка до бесконечно малой величины. Тогда в пределе получим вместо Qе и L соответственно dQе и dL , авместо конечных разностейТ1–Т2 и (w1 2 — w2 2 )/2 получим соответствующие дифференциалы – и – d(w 2 /2).

В последних двух выражениях знак минус появился потому, что берутся бесконечно малые разности T1—Т2 и (w1 2 — w2 2 )/2, а не T2—Т1 и (w2 2 — w1 2 )/2 .

Подставив это в уравнение энергии (2.4) и поменяв знаки на обратные, получим уравнение энергии в дифференциальной форме или дифференциальное уравнение энергии

Если сопоставить выражение для полного запаса энергии (2.2)

E= u + p/ρ + w 2 /2 + gz,

с левой частью уравнения Бернулли, которая также представляет величину полного запаса энергии единицы массы несжимаемой жидкости

p/ρ + w 2 /2 + gz = const,

то можно заметить, что в случае газа дополнительно введена величина внутренней энергии u. Это объясняется тем, что при ρ≠соnst тепловые процессы оказывают влияние на плотность газа, и так как его расширение или сжатие связано с работой, то в конечном итоге это влияние распространяется на механические составляющие энергии. Таким образом, в уравнениях энергии (2.4) и (2.5) присутствуют величины, имеющие как механическое, так и тепловое (калорическое) происхождение.

& [1] с.11…19. [3]с.31…36. [4] с.53..54.


источники:

http://urok.1sept.ru/articles/573733

http://mydocx.ru/5-92901.html