Уравнение сохранения энергии для потока газа это

Тема № 4: Основные уравнения газового потока в лопаточных машинах

Преобразование энергии расширения рабочего тела в энергию вращения ротора происходит в результате обтекания потоком неподвижных сопловых и рабочих решеток.

Законы течения сжимаемой жидкости имеют большое значение для изучения процессов, происходящих в ступени.

Теория лопаточных машин базируется на основных уравнениях движения газа: уравнении неразрывности, уравнении сохранения энергии, уравнении первого закона термодинамики, уравнении Бернулли и уравнениях Эйлера. Эти уравнения рассматриваются в курсе термодинамики. Здесь остановимся лишь на некоторых особенностях этих уравнений, которые связаны с их использованием в расчетах лопаточных машин. Уравнение Эйлера о количестве движения применительно к ступени турбины будет рассмотрено ниже.

Реальное течение рабочего тела в ступени турбомашины является пространственным периодически неустановившимся течением вязкого сжимаемого газа, математическое исследование которого в строгой постановке затруднительно. Для получения относительно простых уравнений, которые можно без труда использовать в инженерных расчетах, делаются некоторые упрощения:

1) рассматривают осредненные значения параметров в точке (стационарность);

2) во всех сечениях каждой ступени неизменными.

Указанные допущения означают, что число лопаток СА и РК бесконечно.

Уравнение неразрывности в случае установившегося течения формулируется следующим образом: секундный массовый расход газа через любое поперечное сечение элементарной струйки при установившемся течении сохраняется постоянным (см. рис. 4.1).

Рис. 4.1. К выводу уравнения неразрывности

Если в рассматриваемых сечениях элемента двигателя поток является равномерным или рассматриваются осредненные параметры газового потока в этих сечениях, то уравнение неразрывности с равным основанием может быть записано и для всего потока. В частности, для сечений, нормальных к оси потока:

. (2.1)

В общем случае, когда выбранное сечение не перпендикулярно к оси струйки, а составляет с ней некий угол , нужно рассматривать нормальную составляющую скорости в этом сечении (т. е. в применении к теории ступени турбомашин – осевую составляющую скорости ), а уравнение неразрывности записывается в виде:

. (2.2)

Уравнение первого закона термодинамики

Уравнением первого закона термодинамики пользуются для определения параметров состояния газа при осуществлении термодинамического процесса. Оно является частным выражением закона сохранения энергии для элементарного объема газа, написанным в системе координат, движущейся вместе с рассматриваемым элементом объема или, в частном случае, для покоящегося газа.

Для элементарного объема газа уравнение первого закона термодинамики имеет вид:

, (2.7)

т. е. все тепло, подведенное к рассматриваемому объему газа, идет на изменение внутренней энергии и на совершение работы против сил давления, связанной с изменением объема.

Для движущегося газа удобно вместо внутренней энергии пользоваться понятием энтальпии:

. (1.8)

Переходя к интегральной форме записи, с учетом того, что тепло трения эквивалентно работе сил трения , можно получить:

, (1.9)

т. е. все тепло, подводимое к потоку между сечениями 1–1 и 2–2 (рис. 2.2), состоящее из тепла, подводимого извне, и тепла, выделяющегося в результате трения (работы сил трения), идет на совершение работы сжатия (расширения) и на изменение внутренней энергии потока ( ).

Уравнение первого закона термодинамики удобно для определения работы сил трения по известному значению показателя политропы , который легко определяется по термодинамическим соотношениям, если известны параметры потока в начале и в конце процесса.

Обобщенное уравнение Бернулли

Основным уравнением, на котором строятся расчеты турбомашин, является уравнение Бернулли:

. (2.10)

Уравнение (2.10) можно трактовать так: подведенная извне энергия идет на работу сжатия (расширения) газа , приращение кинетической энергии и преодоление гидравлического сопротивления .

Заметим, что уравнение Бернулли не зависит от теплообмена с окружающей средой. Однако теплообмен оказывает косвенное влияние на показатель политропы процесса.

Уравнение Бернулли, как и уравнение сохранения энергии, можно отнести к энергетическим и получить его из рассмотрения баланса механической энергии.

При свободном движении идеального газа, при отсутствии энергии, подведенной извне и потерь на преодоление гидравлического сопротивления:

. (1.11)

Для идеальной несжимаемой жидкости, для которой :

, (1.12)

т. е. для повышения давления в компрессоре динамического действия необходимо затормозить поток.

Самый простой способ достичь этого – геометрическое воздействие:

, (1.13)

Таким образом, при дозвуковом потоке ( ) расширение канала приводит к снижению скорости потока. На замедляющийся поток набегают следующие молекулы, что приводит к снижению удельного объема (увеличению плотности), т. е. давление газа растет.

Можно сделать вывод, что рабочий процесс турбокомпрессора состоит из двух взаимосвязанных, одновременно протекающих процессов:

— приращения кинетической энергии за счет подводимой внешней работы (от турбины) ;

— преобразования кинетической энергии потока в энергию потенциальную , пропорциональную давлению.

Уравнение сохранения энергии

Полная энергия рабочего тела может быть записана в виде:

,

где — внутренняя энергия; P/r – потенциальная энергия давления; С 2 /2 – кинетическая энергия; — потенциальная энергия положения.

Данное выражение можно упростить.

Потенциальной энергией положения можно пренебречь, т.к. по сравнению с остальными слагаемыми она ничтожна.

Внутренняя энергия рабочего тела в сумме с потенциальной энергией давления P/r будут равны энтальпии рабочего тела h, которая, таким образом, является мерой той потенциальной энергии, которой обладает поток рабочего тела.

В этом случае уравнение полной энергии запишется в виде:

.

Уравнение сохранения энергии может быть сформулировано следующим образом: полная энергия газового потока на выходе из рассматриваемого элемента (рис. 4.2) больше (или меньше) полной его энергии на входе на величину энергии, подведенной (или отведенной) между рассматриваемыми сечениями :

.

Рис. 4.2. К выводу уравнения сохранения энергии

Поскольку при установившемся движении газа расходы через сечения 0–0 и 1–1 одинаковы, то все члены уравнения сохранения энергии принято представлять отнесенными к 1 кг газа.

Применительно к турбомашинам уравнение сохранения энергии можно записать в виде:

, (2.3)

где – энтальпия газа (отвечает за внутреннюю и потенциальную энергию потока), с 2 /2 – кинетическая энергия потока; и – внешняя подведенная (отведенная) энергия, в виде механической работы и в виде тепла соответственно.

Для элементов двигателя, в которых отсутствует подвод или отвод энергии, уравнение сохранения энергии в частном случае имеет вид:

, (2.4)

т. е. при отсутствии энергообмена полная энергия газового потока сохраняется неизменной и равна энтальпии заторможенного потока.

Запишем уравнение сохранения энергии для турбинной ступени (см. рис. 2.1). Теплообменом с окружающей средой при этом можно пренебречь, т.к. при относительно небольших площадях теплоотдачи и хорошей теплоизоляции коэффициенты теплоотдачи малы.

Обычно для турбинной ступени , поэтому

,

т.е. работа турбинной ступени фактически численно равна изменению энтальпии потока.

Заметим, что в различные записи уравнения сохранения энергии в явном виде не входит трение, а значит, это уравнение применимо как для идеального газа, так и газа, обладающего вязкостью.

Силы трения, которые возникают на стенках, ограничивающих поток газа, и силы внутреннего трения между отдельными струйками газа являются внутренними силами, а работа на их преодоление переходит практически полностью в тепло. Трение приводит лишь к преобразованию одного вида энергии в другой и не отражается на общем балансе энергии. Например, если вследствие трения уменьшается кинетическая энергия, то энтальпия в этом сечении вырастет на ту же величину.

Дата добавления: 2015-06-17 ; просмотров: 3791 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Закон Бернулли как следствие закона сохранения энергии

Разделы: Физика

Цели урока:

  • Изучить частный случай закона сохранения энергии в применении к объяснению зависимости давления от скорости движения жидкости и газа;
  • Сформулировать закон Бернулли;
  • Рассмотреть примеры его применения и проявления на практике.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, презентация к уроку.

Оборудование для демонстраций: весы, макет крыла самолета, небольшая воронка, теннисный шарик, воздуходувка (фен), демонстрационный манометр, таблички на магнитах с физическими формулами.

Оборудование для практических работ: стакан с водой, одноразовый шприц, два листа бумаги, бруски.

I. Организационный момент.

Тема, скорее название, нашего урока звучит не совсем обычно. Может быть кто-то из вас подумал: причем здесь физика? А действительно, причем здесь физика? А это и предстоит нам выяснить сегодня. В конце урока вы должны будете сами сформулировать правильно “физическую” тему. Я же скажу только, что эти объекты объединены одним и тем же законом, а именно, законом сохранения полной механической энергии. Работать вы будете на рабочих картах (приложение 1). Напишите свою фамилию на карте в правом верхнем углу.

II. Актуализация знаний.

Итак, начинаем. Раз уж я упомянула закон сохранения механической энергии, то давайте его вспомним.

1. Что утверждает закон сохранения полной механической энергии?
2. Что называется полной механической энергией?
3. Какая энергия называется кинетической? По какой формуле рассчитывается?
4. Какая энергия называется потенциальной? Формулы потенциальной энергии.

III. Основная часть. Изучение нового материала.

Сегодня на уроке мы будем говорить о применении закона сохранения для движущихся потоков жидкостей и газов. Движение жидкостей и газов разделяется на ламинарное и турбулентное. На дидактических картах (приложение 2) у вас есть их определения. Давайте прочитаем. Мы будем рассматривать ламинарное течение.

А начнем мы с вопроса: можно ли удержать шарик в вертикальной воронке, выдувая из нее воздух? Хорошо, давайте проверим это на опыте. Критерием любой истины является опыт. Мне нужен помощник, который выполнит этот несложный эксперимент. Оказывается, чтобы удержать шарик в воронке надо выдувать воздух. Кто же может объяснить этот “парадокс”? Тогда запишем первый вопрос в таблицу на рабочей карте. Почему при выдувании воздуха из воронки шарик удерживается в ней?

Продолжаем отвечать на вопросы. Что произойдет с листом бумаги, если подуть над ним? Расположите лист бумаги на уровне рта и с силой продуйте воздух. Что произошло с листом бумаги? А почему? Запишите в таблицу на рабочих картах и этот вопрос: почему поднялся листок?

Проведем еще один опыт. Наберите в шприц воды из стакана и, надавливая на поршень, выпустите ее (добейтесь, чтобы она вытекала непрерывной струёй). Сначала выполняет товарищ по парте, а сосед наблюдает. Потом поменяйтесь ролями. Обратите внимание на толщину вытекающей струи. Струя становится уже. А теперь надо объяснить увиденное. Есть какие-то предположения? Записываем в таблицу второй вопрос: почему струя вытекающей воды становится уже? К этим вопросам мы вернемся попозже.

Что ж, вопросов, наверно, пока достаточно. Пора искать ответы. Поможет в этом известный вам закон сохранения механической энергии и неизвестный пока закон Бернулли.

Рассмотрим ламинарное течение жидкости по трубе разного сечения. Посмотрите на слайд. Там, где сечение не меняется скорость тоже остается постоянной. Но одинакова ли скорость течения жидкости на различных участках? И где больше? А может кто-нибудь объяснить почему? (Так как жидкость несжимаема, то за одинаковый промежуток времени t через каждое из этих сечений должна пройти жидкость одного и того же объема. Но как жидкость, протекающая через первое сечение может “успеть” за то же время протечь через значительно меньшее сечение ? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких).

Покажите на рисунке 1 в рабочих картах векторы скоростей в различных участках. А теперь проверим как это получилось у меня (слайд). Значит, скорость зависит от сечения. Более того, зависимость эта обратно пропорциональна. Математически это выражается следующим соотношением, которое носит название уравнения неразрывности струи: VS= const, здесь – V скорость жидкости, S – площадь сечения трубы, по которой течет жидкость. Сформулировать этот закон можно так: сколько вливается жидкости в трубу, столько должно и выливаться, если условия течения не изменяются. Скорость в узких участках трубы должна быть выше, чем в широких.

Отсюда следует, что

Вывод: чем меньше площадь сечения, тем больше скорость.

Задача №1. Как и во сколько раз изменится кинетическая энергии жидкости, если сечение трубы уменьшить в 2 раза? (Ответ увеличится в 4 раза). А потенциальная энергия? Осторожно, ошибка!

Потенциальная энергия уменьшится, но необязательно в 4 раза!

(Например: 100 = 100, 100 = 10 + 90, 100 = 40 + 60)

С вопросом о скорости вы справились хорошо. А что скажете о давлении воды в разных частях? Если изменяется, то как? На рисунке 2 отметьте уровень воды в вертикальных трубках в зависимости от давления жидкости в горизонтальной трубе. А теперь посмотрим, на этот слайд . В узких местах трубы высота столбика жидкости меньше, чем в широких. О чем говорит разная высота воды? Оказывается, в узких местах трубы давление жидкости меньше, чем в широких. А почему?

При переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии. Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия “mgh”, потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости. Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем. Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы.

Чтобы разобраться в причинах уменьшения давления в узких частях и увеличения в широких, используем закон сохранения энергии и математические навыки. Я начну, а вы будете помогать.

Работа сил давления, совершенная над элементом жидкости при его перемещении, равна:

здесь =V1 и =V 2 – объемы жидкости, прошедшей за одно и тоже время через сечения 1 и 2. Подставим (2) в (1) и получаем:

Так как высота центра масс трубы не меняется, то h1 = h 2 . Выберем нулевой уровень, проходящий через центр масс, тогда mgh 1 = mgh2 = 0.

Так как жидкость практически несжимаема, то объемы ее, прошедшие за одно и тоже время равны, V1 = V 2 (или ), поэтому обе части равенства можно разделить обе части на V.

(*)

Таким образом, если скорость, например, увеличивается, то увеличивается первое слагаемое, значит, чтобы равенство выполнялось, на такую же величину второе слагаемое уменьшается, т.е. уменьшается давление.

Вывод: Чем больше скорость потока жидкости, тем меньше ее давление.

Зависимость давления от скорости течения называют эффектом, а уравнение (*) – законом Бернулли в честь автора, швейцарского ученого Даниила Бернулли, который, кстати, работал в С.Петербурге. Закон Бернулли для ламинарных потоков жидкости и газов является следствием закона сохранения энергии.

Убедимся на опыте, что полученный вывод справедлив и для газов. Для этого выполним еще практические задания (описание на дидактической карте).

1 Вариант. Возьмите в руки два листка бумаги и расположите их на расстоянии3– 4см друг от друга и продуйте несильно между ними воздух. Что наблюдаем? Почему? Между листочками давление уменьшилось, а снаружи осталось таким же. Повторите опыт, но подуйте теперь сильнее. Объясните этот результат.

2 Вариант. Положите листок на две книги, как показано на слайде. Продуйте воздух под листком сначала несильно, а потом сильнее. Объясните, что вы наблюдали.

Настало время для ответов на оставленные вами, но не забытые мною вопросы:

  • Почему при выдувании воздуха из воронки шарик удерживается в ней?
  • Почему поднялся листок?
  • Почему струя вытекающей воды становится уже?

Запишите ответы в таблицы.

Вот и настала очередь самолетов. Посмотрим видеофрагмент (Приложение 4).

Так почему же поднимается самолет? В чем причина возникновения подъемной силы?

Все дело в форме крыла и в угле атаки.

Убедимся на опыте (рисунок 1). Почему нарушилось равновесие весов?

Кстати сказать, у птиц крыло тоже имеет похожую форму.

Эффект Бернулли — это то, благодаря чему птицы и самолеты могут летать. Разрез крыла у них практически одинаковый: за счет сложной формы крыла создается разница обтекающих его сверху и снизу воздушных потоков, что позволяет телу подниматься вверх.

Формулу для расчета подъемной силы впервые получил наш соотечественник Николай Егорович Жуковский – “отец русской авиации”.

Что касается белок – летяг, то они, конечно же не могут развить большую скорость и форма “крыльев” немножко другая, поэтому и подъемная сила у них невелика и возникает она в большой степени из-за угла наклона. Как и обычная белка, летяга большую часть жизни проводит на деревьях, но на землю спускается гораздо реже. Между передними и задними лапами у неё имеется кожная перепонка, которая позволяет планировать с дерева на дерево. Так белка-летяга преодолевает расстояние до 50–60 м по нисходящей параболической кривой. Для прыжка летяга забирается на верхушку дерева. Во время полёта её передние конечности широко расставлены, а задние прижаты к хвосту, образуя характерный треугольный силуэт. Меняя натяжение перепонки, летяга маневрирует, иногда изменяя направление полёта на 90°. Хвост в основном выполняет роль тормоза. Посадку на ствол дерева летяга обычно совершает по касательной, как бы сбоку. Перед посадкой принимает вертикальное положение и цепляется всеми четырьмя лапами, после чего сразу перебегает на другую сторону ствола. Этот маневр помогает ей уворачиваться от пернатых хищников.

Задача№2: В полете давление воздуха под крылом самолета 97,8 кН/м 2 , а над крылом 96,8 кН/м 2 . Площадь крыла 20 м 2 . Определить подъемную силу.

Решение: F = PS, где P = P2 – P 1, тогда F = ( P2 – P 1)S, F =20 . 10 3 H

Задача №3. О “крученых мячах” вы прочитаете самостоятельно текст и ответьте на вопросы.

Эффект Магнуса.

  1. Почему движущиеся вращающиеся тела отклоняются от прямолинейной траектории?
  2. Почему давление на мяч с разных сторон различно?
  3. Почему относительная скорость воздушного потока различна по разные стороны мяча?

Можно привести еще множество примеров: бумеранг, летающие тарелки, водоструйный насос, распылители, карбюраторы, катера на подводных крыльях.

А вот посмотрите, какую опасность представляет уменьшение давления для морских судов. Поток воды между судами имеет меньшее давление, чем снаружи. Все моряки знают, что два судна, идущих рядом на больших скоростях сильно притягиваются друг к другу. Еще опаснее, когда один корабль идет за другим. Силы притяжения, возникшие из-за разности давлений, стремятся корабли развернуть . Задний корабль разворачивается сильнее переднего. Столкновение в таких случаях неизбежно.

Задача №4. Очень часто лоцманы жалуются на коварные мели, которые так и притягивают к себе суда. Почему мели на реках притягивают суда?

IV. Закрепление изученного материала

1. Жидкость течет через трубу с переменным поперечным сечением. В каком сечении трубы скорость “v” течения жидкости и ее давление “P” на стенках максимальна?

    v и P максимальны в сечении 1;
  • v и P максимальны в сечении 2;
  • v максимальны в сечении 1, P – в сечении 2;
  • v максимальны в сечении 2, P – в сечении 1;
  • v и P одинаковы во всех сечениях.

2. В какой трубке уровень воды будет выше?

3. Что произойдет, если продувать струю воздуха между двумя шариками от пинг-понга, подвешенными на нитях (смотри рисунок)?

  • Останутся неподвижными;
  • Будут двигаться вместе вправо или влево;
  • Отклонятся друг от друга;
  • Приблизятся друг к другу.

Подводя итог нашего урока, вспомним еще раз основные законы и уравнения, с которыми познакомились на уроке:

  1. Уравнение неразрывности струи – какую зависимость и каких величин оно выражает?
  2. Закон Бернулли – что он утверждает?

V. Рефлексия . Подведение итогов урока.

А теперь настало время дать нашему уроку “физическое” название. Какие будут ваши предложения?

Закон Бернулли как следствие закона сохранения энергии. (Проявление и применение закона сохранения энергии для движущихся потоков жидкости и газов).

VI. Домашнее задание.

Домашнее задание:

  1. Задачи № 404, 406, 409, 410 (Рымкевич А.П. Физика. Задачник. 10-11 классы.- М.: Дрофа, 2003)
  2. Домашняя практическая работа: Сделайте из тонкой бумаги цилиндр диаметром 3 см, длиной 20 см. Положите его на стол на наклонную плоскость. Пронаблюдайте за траекторией, по которой скатывается цилиндр. Объясните наблюдаемое явление.

Термодинамические основы сжатия газов

Уравнение состояния газа

В теории компрессорных машин, работающих в условиях, когда можно пренебречь межмолекулярными силами и размерами молекул, используется уравнение состояния идеального газа.

При сжатии воздуха и его составляющих (азот, кислород, аргон, водород, гелий и др.) в области давлений до 10 МПа и температур более 273 К применение уравнения дает погрешность не более 2%.

При более высоких давлениях сжатия сказывается объем молекул газа и влияние силы межмолекулярного притяжения. Многоатомные газы и пары при давлениях и температурах, близких к критическим, не следуют уравнению состояния идеального газа. В этом случае газ рассматривается как реальный.

Объем реального газа при низких давлениях и температурах из-за. взаимного притяжения молекул меньше, чем у идеального газа, а при высоких давлениях больше, чем у идеального при влиянии собственного объема молекул. Избыточный объем газа, учитывающий объем молекул и влияние сил межмолекулярного притяжения, равен разности при одинаковых условиях.

Значения коэффициента и показателя отклонения сжимаемости Р в зависимости от давления и температуры для ряда газов приведены на рис 2.1 и в приложении П.З.

Для газовой смеси, если ее компоненты в процессе сжатия не конденсируются и не вступают друг с другом в химическую реакцию, справедливы уравнения состояния идеального и реального газов, приведенные выше. Использование этих уравнений возможно, если известны значения газовой постоянной смеси Rcm и коэффициента сжимаемости смеси 5см.

Использование правила аддитивности для определения коэффициента ξсм дает надежные результаты только в тех случаях, когда значения коэффициентов сжимаемости отдельных газов, составляющих смесь, близки друг к другу. Если же они существенно отличаются друг от друга, сумма парциальных объемов отдельных газов, составляющих газовую смесь, будет отличаться от объема смеси и поэтому значение, найденное по (2.10), будет неточным.

Для более точного определения может быть рекомендован метод, основанный на использовании закона соответственных состояний.

Процессы сжатия в компрессорных машинах

Процессы сжатия газа в компрессорных машинах обычно рассматриваются в системах Т, s- и р, υ-координат.

Термодинамический рабочий процесс компрессора протекает по политропе и описывается уравнением р/рη — const.

Для начальных и конечных параметров сжимаемого газа в изо-энтропном процессе (рис. 2.2) повышение температуры пропорционально увеличению давления и зависит от показателя k:

В теории компрессорных машин рассматриваются так называемые эталонные процессы: для машин без внутреннего охлаждения (лопастной компрессор)—адиабатный процесс; для машин с внутренним охлаждением (поршневой компрессор, многоступенчатый компрессор) — изотермический процесс.

Действительные рабочие процессы характеризуются наличием теплообмена с окружающей средой, а также наличием внутреннего теплопритока в результате работы сил трения в процессе сжатия газа.

Пренебрегая теплообменом с окружающей средой и работой сил трения в ступени центробежного компрессора, получаем эталонный процесс сжатия — изоэнтропное сжатие (n = k) (адиабатное сжатие без учета работы сил трения). Рабочим процессом ступени центробежного компрессора считается по-литропное сжатие с учетом работы сил трения (n>k)y если пренебречь теплообменом с окружающей средой. Эталонным процессом охлаждаемых машин считается изотермический, а рабочим процессом — политропный, проходящий с охлаждением (рис. 2.3).

Изотермический процесс сжатия газа в компрессоре изображен на рис. 2.3 горизонтальной линией при Т = const pv — const.

Уравнения сохранения энергии в компрессорных машинах

Энергия, сообщенная сжимаемому газу в компрессоре, расходуется на изменение энтальпии газа, кинетической и потенциальной энергии его и на покрытие тепловых потерь в окружающую среду. Пренебрегая изменением потенциальной энергии положения, дифференциальное уравнение энергии потока газа, отнесенное к 1 Кг массы газа, Дж/кг, можно записать, где dLi — элементарная энергия, сообщенная газу; dh — изменение энтальпии газа; d(c2/2) — изменение кинетической энергии газа; dqo — отведенное от газа количество теплоты. Интегрируя от входа до выхода компрессора получаем, что

Для неохлаждаемой ступени лопастного компрессора, если пренебречь теплообменом с окружающей средой,
где Li — внутренняя удельная работа лопастного компрессора. Энергия газового потока характеризуется единым параметром, называемым полная энтальпия:
Полная энтальпия h* и полная температура T* соответствуют так называемому полному давлению р*, которое имел бы газ при преобразованной без потерь кинетической энергии (адиабатный поток).

Движение реального (вязкого) газа сопровождается внутренними потерями энергии на трение и вихреобразование в рабочих органах компрессора. Энергия, израсходованная на трение и вихреобразование, Lr полностью превращается в тепловую энергию qr и передается потоку газа.

Уравнение сохранения энергии (первый закон термодинамики) имеет вид
dq = du + pdv,
где dq — элементарное количество теплоты, сообщенное газу; du — элементарное изменение внутренней энергии газа; pdv — элементарная внешняя работа газового процесса.

Известно, что для идеального газа
dh = du + d(pv) = du + pdv + vdp или
du = dq — pdv — vdp.

Подставим значение du в уравнение:
dq = dh — vdp,
где vdp — элементарная работа сжатия и перемещения газа.

В общем случае величина dq в компрессоре равна
dq = dqr — dq0
где dqr = dLr — элементарное количество теплоты, сообщенной газу вследствие потерь на трение и вихреобразование; dq0 — элементарное количество теплоты, отведенной от. газа. Из уравнений следует
vdp + dLr = dh + dq0.

Рассмотренные уравнения энергии используются в теории и расчетах компрессорных машин.

Охлаждение газа в компрессоре

Охлаждение газа в компрессоре уменьшает работу сжатия. При этом температура сжимаемого газа уменьшается до допустимых значений. Охлаждение в процессе сжатия обычно применяется при относительно высокой степени сжатия на ступень (поршневые компрессоры) или при большом значении показателя адиабаты (газы с большой молекулярной массой).

В компрессоростроении применяются следующие способы охлаждения сжимаемого газа: внутреннее, внешнее, комбинированное и предварительное, а также охлаждение путем впрыска охлаждающей среды в проточную часть машины.

Внутреннее охлаждение осуществляется непосредственно в процессе сжатия газа путем охлаждения стенок рабочих органов компрессора и обычно применяется в объемных машинах (поршневые, винтовые, ротационные и др. компрессоры) . Охлаждаемая среда — обычно вода или окружающий воздух.

В лопастных компрессорах внутреннее охлаждение применяется редко по ряду причин: увеличиваются размеры компрессора и компрессорной установки, увеличиваются гидравлические потери в неподвижных элементах рабочих органов из-за увеличения поверхности охлаждения, возможна конденсация влаги, имеющейся в сжимаемом газе и др.

Внешнее охлаждение газа осуществляется в межступенных холодильниках, расположенных вне проточной части компрессора. Сжатый газ охлаждается во внешнем холодильнике при некотором снижении давления из-за гидравлических потерь в холодильнике почти до первоначальной температуры.

На рис. 1.10 показана схема трехступенчатого поршневого компрессора с двумя промежуточными (межступенчатыми холодильниками). На рис. 2.5 показана Т, s-диаграмма рабочего процесса сжатия вышеуказанного компрессора при условии, что газ сжимается в отдельных ступенях по политропе п > k и охлаждается почти до первоначальной температуры в каждой ступени без потерь давления в холодильниках, т. е. при р = const. Заштрихованная площадь диаграмм соответствует уменьшению подводимой энергии на сжатие газа при межступенном охлаждении. Имеющаяся в сжимаемом газе влага конденсируется в межступенных холодильниках и удаляется.

Рис. 2.5. Т, s-диаграмма трехсекционного лопастного компрессора с промежуточным охлаждением

Комбинированное охлаждение предусматривает применение одновременно внутреннего и внешнего охлаждения (поршневые, винтовые и другие компрессоры объемного типа). На рис. 2.6 показана Т, s-диаграмма различных процессов сжатия в компрессоре.

Предварительное охлаждение целесообразно применять, когда имеется существенная разница между температурой всасываемого газа и охлаждающей водой. Установленный перед компрессором холодильник, снижая температуру поступающего газа, увеличивает плотность, массовый расход и потребляемую мощность. С энергетической точки зрения предварительное охлаждение нерационально, так как экономия работы сжатия за счет охлаждения невелика из-за повышения потребляемой мощности при увеличении плотности газа.

Применение промежуточных холодильников увеличивает металлоемкость и усложняет конструкцию машины, повышает ее себестоимость на 20—30 % по сравнению с неох-лаждаемыми компрессорами. Использование охлаждающей воды увеличивает эксплуатационные затраты. Применение охлаждения газа должно основываться на результатах технико-экономических расчетов. Считается возможным изготовлять неохлаждаемые компрессоры стационарного типа с 8 2, а при сжатии пропана или фреона-12 (k = 1,14) при е > 10. При дефиците воды используется воздушное охлаждение.

Теплоту, отводимую от компрессоров, можно иногда использовать в качестве вторичных энергетических ресурсов для обогрева теплиц, зданий и др.

Охлаждение впрыском жидкости в поток перекачиваемого газа можно применять, если впрыскиваемая жидкость существенно не влияет на свойства перекачиваемых газов (вода — воздух; жидкий аммиак — аммиак; слабый раствор азотной кислоты — нитрозный газ). Охлаждение газа происходит за счет теплоты испарения жидкости. Жидкость от постороннего источника через распыливающие форсунки впрыскивается непосредственно в проточную часть компрессора. Например, при впрыскивании 1% по массе воды температура сжимаемого воздуха снижается примерно на 25°С.

При применении предварительного охлаждения газа обычно приходится использовать специальную холодильную установку. Так, например, на компрессорных станциях магистральных северных газопроводов газ предварительно охлаждается во избежание подтаивания грунта в зоне трубопровода.

Влияние начального давления на работу сжатия компрессора

Давление всасывания воздушного компрессора зависит от барометрического давления, определяемого высотой установки компрессора над уровнем моря. Для дожимающих и циркуляционных компрессоров давление всасывания может изменяться в широких пределах в соответствии с требованиями

технологических процессов. Поэтому необходимо определить, как зависит работа, затрачиваемая на сжатие газа в ступени компрессора, от давления всасывания.

Для определения отношения давления, соответствующего максимуму работы, продифференцируем зависимость.

Применение тепловых диаграмм при расчете поршневого компрессора

Выполнение теплового расчета поршневого компрессора с использованием тепловых s, Т- и s, ft-диаграмм позволяет существенно упростить расчет. На s, 7-диаграмму (рис. 2.8) наносятся изобары (р = — const), а также линии постоянной энтальпии (h — const).

Удельная энтальпия идеального газа зависит только от температуры. Удельная энтальпия реального газа зависит от температуры и давления, поэтому линии постоянной энтальпии представляют собой кривые, которые с уменьшением энтропии в области относительно низких давлений.

Линия, разграничивающая эти области и проходящая через точку К, соответствующую состоянию газа, при котором ε == 1, называется кривой инверсии.

Параметры реального газа на этой кривой подчиняются уравнению состояния идеального газа. Область диаграмм, расположенная справа от кривой инверсии, соответствует состояниям, при которых дросселирование газа от давления Pi до давления р2 приводит к снижению температуры на A7 = 7i — Т2. Для состояний газа, охватываемых областью диаграмм слева от кривой инверсии, характерно повышение температуры при дросселировании.

На диаграмме имеется граничная кривая, проходящая через точку К. и соответствующая критическим параметрам состояния газа; она разграничивает диаграмму на две области. Над кривой находится область сухого пара или газа; под кривой — область влажного пара или газа.

Ha s, Т-диаграмме q изображается площадью под линией процесса, ограниченной двумя ординатами. Энтропия газа возрастает, если процесс изменения его состояния осуществляется с подводом теплоты, и убывает, если этот процесс происходит с отводом теплоты. В случае же, еслц процесс изменения состояния газа идет без теплообмена (и без потерь), энтропия газа не изменяется.

На диаграмме показаны изотермический (7 = const линия 1-2) у изоэнтропный (n-const линия 1-2′) и политропный (линия 1-2″ и 1-2″) процессы сжатия идеального газа от давления р1 до давления р2. Количество теплоты, отводимой от газа в изотермическом процессе, выражается площадью диаграммы под линией 1-2.

Изоэнтропический процесс характеризуется отсутствием теплообмена и потерь, вследствие чего для этого процесса s = const. Что касается политропного процесса, то в случае, если показатель политропы п меньше показателя изоэнтро-пы, процесс происходит с отводом теплоты и кривая процесса 1-2″ располагается левее линии изоэнтропического процесса 1-2′.

Количество подводимой к 1 кг газа теплоты изображается площадью под кривой 1-2″ (+q), а от-водимой — площадью под кривой 1-2″ (—q). s, Г-диаграмма позволяет найти и количество теплоты, отводимой от 1 кг газа в холодильнике.

При условии охлаждения газа от температуры нагнетания Т2 до температуры всасывания Т1 количество теплоты равно площади диаграммы под отрезком изобары р2» соответствующим изменению температуры газа от Т2 до Т1.

Суммарное удельное количество теплоты qc, отводимое от идеального газа в цилиндре и холодильнике при охлаждении газа до температуры Ти равно удельной работе цикла
qс = l = q1 + q2,
где q2 — удельное количество теплоты, подводимое к газу (или отводимое от него) в цилиндре; q1 — удельное количество теплоты, отводимое от газа в холодильнике.

В изотермическом цикле q1 = О и l = q2. В изоэнтропическом цикле q2 = 0 и l = q1. В политропном цикле l = q2 + q1 причем q2 может быть положительным в зависимости от» того, подводится теплота к газу в цилиндре в процессе сжатия или отводится от него.

При сжатии реального газа связь между количеством теплоты, отведенной от газа в цилиндре и холодильнике, и работой 1, затраченной на осуществление цикла в ступени, выражается зависимостью
qc = l — (h» — h1),
где h1 — энтальпия всасываемого в ступень газа; h» — энтальпия газа, выходящего из холодильника.

Для реального газа даже если температура газа, выходящего из холодильника T», равна температуре всасываемого в ступень газа Т1. Работа и теплота в s, T-диаграмме при изотермическом и изоэнтропном сжатии реального газа показаны на рис. 2.9.

Из рисунка видно, что в зависимости от того, какой знак имеет разность h» — h1 работа, затрачиваемая в изотермическом и изоэнтропном сжатии реального газа, может превышать количество отводимой теплоты или быть меньше. Аналогично и при политропном сжатии реального газа.

В общем случае если сжатие осуществляется при состояниях газа, соответствующих области, расположенной на s, Г-диаграмме левее и выше кривой инверсии (высокие давления и температуры газа), затраченная работа превышаем количество теплоты qc, отводимое от газа в цилиндре и холодильнике. Если сжатие осуществляется при состояниях газа, соответствующих области, расположенной на s, Г-диаграмме правее кривой инверсии (низкие давления и температуры газа), затраченная работа меньше количества теплоты — qc.

В s, T-диаграмме (рис. 2.10) по горизонтальной оси откладывается удельная энтропия s и по вертикальной оси — удельная энтальпия Л. На диаграмму нанесены изобары р = const и изотермы Т = const, s, h-диаграмма применяется для определения удельной работы в изо энт р опическом. реального газа ta и удельного количества теплоты q1 отводимого от реального газа в холодильнике.


источники:

http://urok.1sept.ru/articles/573733

http://www.artkompressor.ru/kompressornye-mashiny/termodinamicheskie-osnovy-szhatiya-gazov/