Уравнение сохранения энергии газового потока

Тема № 4: Основные уравнения газового потока в лопаточных машинах

Преобразование энергии расширения рабочего тела в энергию вращения ротора происходит в результате обтекания потоком неподвижных сопловых и рабочих решеток.

Законы течения сжимаемой жидкости имеют большое значение для изучения процессов, происходящих в ступени.

Теория лопаточных машин базируется на основных уравнениях движения газа: уравнении неразрывности, уравнении сохранения энергии, уравнении первого закона термодинамики, уравнении Бернулли и уравнениях Эйлера. Эти уравнения рассматриваются в курсе термодинамики. Здесь остановимся лишь на некоторых особенностях этих уравнений, которые связаны с их использованием в расчетах лопаточных машин. Уравнение Эйлера о количестве движения применительно к ступени турбины будет рассмотрено ниже.

Реальное течение рабочего тела в ступени турбомашины является пространственным периодически неустановившимся течением вязкого сжимаемого газа, математическое исследование которого в строгой постановке затруднительно. Для получения относительно простых уравнений, которые можно без труда использовать в инженерных расчетах, делаются некоторые упрощения:

1) рассматривают осредненные значения параметров в точке (стационарность);

2) во всех сечениях каждой ступени неизменными.

Указанные допущения означают, что число лопаток СА и РК бесконечно.

Уравнение неразрывности в случае установившегося течения формулируется следующим образом: секундный массовый расход газа через любое поперечное сечение элементарной струйки при установившемся течении сохраняется постоянным (см. рис. 4.1).

Рис. 4.1. К выводу уравнения неразрывности

Если в рассматриваемых сечениях элемента двигателя поток является равномерным или рассматриваются осредненные параметры газового потока в этих сечениях, то уравнение неразрывности с равным основанием может быть записано и для всего потока. В частности, для сечений, нормальных к оси потока:

. (2.1)

В общем случае, когда выбранное сечение не перпендикулярно к оси струйки, а составляет с ней некий угол , нужно рассматривать нормальную составляющую скорости в этом сечении (т. е. в применении к теории ступени турбомашин – осевую составляющую скорости ), а уравнение неразрывности записывается в виде:

. (2.2)

Уравнение первого закона термодинамики

Уравнением первого закона термодинамики пользуются для определения параметров состояния газа при осуществлении термодинамического процесса. Оно является частным выражением закона сохранения энергии для элементарного объема газа, написанным в системе координат, движущейся вместе с рассматриваемым элементом объема или, в частном случае, для покоящегося газа.

Для элементарного объема газа уравнение первого закона термодинамики имеет вид:

, (2.7)

т. е. все тепло, подведенное к рассматриваемому объему газа, идет на изменение внутренней энергии и на совершение работы против сил давления, связанной с изменением объема.

Для движущегося газа удобно вместо внутренней энергии пользоваться понятием энтальпии:

. (1.8)

Переходя к интегральной форме записи, с учетом того, что тепло трения эквивалентно работе сил трения , можно получить:

, (1.9)

т. е. все тепло, подводимое к потоку между сечениями 1–1 и 2–2 (рис. 2.2), состоящее из тепла, подводимого извне, и тепла, выделяющегося в результате трения (работы сил трения), идет на совершение работы сжатия (расширения) и на изменение внутренней энергии потока ( ).

Уравнение первого закона термодинамики удобно для определения работы сил трения по известному значению показателя политропы , который легко определяется по термодинамическим соотношениям, если известны параметры потока в начале и в конце процесса.

Обобщенное уравнение Бернулли

Основным уравнением, на котором строятся расчеты турбомашин, является уравнение Бернулли:

. (2.10)

Уравнение (2.10) можно трактовать так: подведенная извне энергия идет на работу сжатия (расширения) газа , приращение кинетической энергии и преодоление гидравлического сопротивления .

Заметим, что уравнение Бернулли не зависит от теплообмена с окружающей средой. Однако теплообмен оказывает косвенное влияние на показатель политропы процесса.

Уравнение Бернулли, как и уравнение сохранения энергии, можно отнести к энергетическим и получить его из рассмотрения баланса механической энергии.

При свободном движении идеального газа, при отсутствии энергии, подведенной извне и потерь на преодоление гидравлического сопротивления:

. (1.11)

Для идеальной несжимаемой жидкости, для которой :

, (1.12)

т. е. для повышения давления в компрессоре динамического действия необходимо затормозить поток.

Самый простой способ достичь этого – геометрическое воздействие:

, (1.13)

Таким образом, при дозвуковом потоке ( ) расширение канала приводит к снижению скорости потока. На замедляющийся поток набегают следующие молекулы, что приводит к снижению удельного объема (увеличению плотности), т. е. давление газа растет.

Можно сделать вывод, что рабочий процесс турбокомпрессора состоит из двух взаимосвязанных, одновременно протекающих процессов:

— приращения кинетической энергии за счет подводимой внешней работы (от турбины) ;

— преобразования кинетической энергии потока в энергию потенциальную , пропорциональную давлению.

Уравнение сохранения энергии

Полная энергия рабочего тела может быть записана в виде:

,

где — внутренняя энергия; P/r – потенциальная энергия давления; С 2 /2 – кинетическая энергия; — потенциальная энергия положения.

Данное выражение можно упростить.

Потенциальной энергией положения можно пренебречь, т.к. по сравнению с остальными слагаемыми она ничтожна.

Внутренняя энергия рабочего тела в сумме с потенциальной энергией давления P/r будут равны энтальпии рабочего тела h, которая, таким образом, является мерой той потенциальной энергии, которой обладает поток рабочего тела.

В этом случае уравнение полной энергии запишется в виде:

.

Уравнение сохранения энергии может быть сформулировано следующим образом: полная энергия газового потока на выходе из рассматриваемого элемента (рис. 4.2) больше (или меньше) полной его энергии на входе на величину энергии, подведенной (или отведенной) между рассматриваемыми сечениями :

.

Рис. 4.2. К выводу уравнения сохранения энергии

Поскольку при установившемся движении газа расходы через сечения 0–0 и 1–1 одинаковы, то все члены уравнения сохранения энергии принято представлять отнесенными к 1 кг газа.

Применительно к турбомашинам уравнение сохранения энергии можно записать в виде:

, (2.3)

где – энтальпия газа (отвечает за внутреннюю и потенциальную энергию потока), с 2 /2 – кинетическая энергия потока; и – внешняя подведенная (отведенная) энергия, в виде механической работы и в виде тепла соответственно.

Для элементов двигателя, в которых отсутствует подвод или отвод энергии, уравнение сохранения энергии в частном случае имеет вид:

, (2.4)

т. е. при отсутствии энергообмена полная энергия газового потока сохраняется неизменной и равна энтальпии заторможенного потока.

Запишем уравнение сохранения энергии для турбинной ступени (см. рис. 2.1). Теплообменом с окружающей средой при этом можно пренебречь, т.к. при относительно небольших площадях теплоотдачи и хорошей теплоизоляции коэффициенты теплоотдачи малы.

Обычно для турбинной ступени , поэтому

,

т.е. работа турбинной ступени фактически численно равна изменению энтальпии потока.

Заметим, что в различные записи уравнения сохранения энергии в явном виде не входит трение, а значит, это уравнение применимо как для идеального газа, так и газа, обладающего вязкостью.

Силы трения, которые возникают на стенках, ограничивающих поток газа, и силы внутреннего трения между отдельными струйками газа являются внутренними силами, а работа на их преодоление переходит практически полностью в тепло. Трение приводит лишь к преобразованию одного вида энергии в другой и не отражается на общем балансе энергии. Например, если вследствие трения уменьшается кинетическая энергия, то энтальпия в этом сечении вырастет на ту же величину.

Дата добавления: 2015-06-17 ; просмотров: 3780 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Основные уравнения газового потока

Основные уравнения газового потока

  • Если движение газа по каналу стабильно, то одинаковое количество газа в единицу времени протекает по каждому участку канала. В этом случае (рис. 10.1), при определенном расходе газа в каждом участке канала расход газа равен(10.1). Где O-2-й массовый расход газа. Рх, РГ-площадь поперечного сечения канала. w и r-это скорости потока соответствующих поперечных сечений. Определенный объем одного и того же поперечного сечения; формула (10.1) называется уравнением неразрывности или непрерывности, поскольку постоянство массового расхода всех участков канала в каждый момент времени устанавливает условия неразрывности струи.

В рассматриваемом процессе первый закон термодинамики. Форма газа урав-кг газа через канал является = Фунт / + 4-С—(- (3% Си、 (10.2), где же буква «Л». Основное количество тепла, подаваемого или отводимого к газу в целевом участке движения. L / — изменение внутренней энергии газа в соответствующем сечении. го /. ’- Работа газа против внешних сил; С-приращение кинетической энергии газа при движении газа в выбранной области. С ^ а ^ — элемент Сила против работы тары 10.1 Этот компонент в олове; газ можно проигнорировать. Работа газа по противодействию внешним силам движущегося газа — это работа, которая тратится на прессование. Рассмотрим поток газа в канале рис.

За пределами пограничного слоя градиент скорости, нормальный к направлению потока, обычно настолько мал, что вязкостью можно пренебречь. Людмила Фирмаль

В 1-мерном измерении stream. In в разделах/-/и 11-11 различают газы определенной массы. Поток, поступающий в секцию 1-1, действует как поршень, отталкивая газ, заполняющий канал. сила pP действует на массу газа, выделенную в левом канале, а сила (p + Lp) (P4-LR) действует справа. Учитывая признаки работы, признанные в термодинамике, работа движения является Л ’=(П 4-С / П)(П 4-ЛХ) (Н + Ла») — ППУ>-(10 3) Если вы уменьшите небольшое количество 2 или более и отбросите его, это будет выглядеть так: Л ’ — rRLchi 4-Рих / Р 4-shRLr, (10.4) L ’= pL (Pu>) 4-PsLr.

Где N-уравнение неразрывности ТЧ = ТС. Расход потока постоянн и в непрерывной среде Если мы связываем работу против внешних сил с 1 кг газа、 L ’=(1 (ri) = Рио + ойр. (U. Seven) Количество cir, масса экстрагируемого вещества Это за гранью несжимаемости. 2-й член pc1i представляет собой основную работу, выполняемую движущимся телом продукта газа в результате деформации под действием равномерно распределенного давления. При замене работы на внешние силы в уравнениях первого закона термодинамики записывается около 1 кг газа 1е = c1u + c1G + =(1и + С1 (ПУ) 4- = я(п + Пи)+.(10.8) Потому что, как известно,+ ri = I — Си+ .

  • Эта формула показывает, что тепло, подводимое к движущемуся газу, расходуется в двух направлениях: увеличение энтальпии газа и увеличение внешней кинетической энергии. То есть скорость потока газа увеличивается. Формула (10.9) является основой течения газа или пара, она эффективна как для обратимых течений без действия сил трения, так и для необратимых течений с трением.

Для потока, в котором присутствует сила трения, необходимо добавить 2 члена к формуле (10.9).1 учитывает работу, затраченную на преодоление силы трения — / тр, еще 1 представляет собой приращение теплоты газового потока за счет трения-поскольку работа над силой трения проходит полностью, в тепле эти 2 элемента имеют одинаковый размер, а так как знаки различны, то они исчезают друг от друга. Поэтому наличие сил трения не может нарушить общий энергетический баланс.

Это явление, весьма важное для гидродинамики и теории теплообмена, было впервые установлено Людвигам Прандтлем в 1904 г. Людмила Фирмаль

В изолированных потоках газа, если тепло не передается при движении газа ПО КАНАЛУ (1 / = 0)、 Из уравнения (10.10) следует, что в изолированном стационарном потоке газа через канал сумма удельной энтальпии и удельной кинетической энергии остается постоянной. Выражение (10.9), как и в (10.10), справедливо как для обратимых, так и для необратимых flows. It следует отметить, что эти формулы эффективны только в том случае, если газ на ходу выполняет работу расширения и не производит полезной (технической) работы (например, вращение рабочего класса турбины).

Приводимый в движение потоком газа. Первый закон термодинамики (10.8). Вам нужно записать В форме че = ух + ^(Р’) + ^ МС,+ — ^ г — = а + г(ТЭН+ -^ -, (10.11) Здесь/ т» — техническая работа*. Если техническая работа осуществляется потоком, то работа деформации при расширении отдается внешнему потребителю, но в канале она воспринимается соседними элементами, изменяя его кинетическую энергию. Из сравнения формулы (10.11) и формулы первого закона термодинамики (4.9) получается интегральная форма, записанная о выделенных элементах деформированного, но не смещенного потока. ’тек = С П’ ^ + P1V!-.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА

Процессы движения газа, происходящие в различных теплотехнических установках, связаны с преобразованием энергии в газовом потоке. Расчеты рабочих процессов этих установок строятся на общих положениях теории га­зового потока. Эта теория базируется на основных положениях термодина­мики и на ряде допущений, к числу которых относятся следующие:

1.Течение газа установившееся, т.е. в каждом выделенном сечении пара­метры газа во всех его точках остаются постоянными.

2.От сечения к сечению происходят бесконечно малые изменения пара­метров газа по сравнению со значениями самих параметров. Течение газа стационарное.

При таких допущениях газ при движении будет проходить ряд последова­тельных равновесных состояний.

Стационарное течение газа описывается системой уравнений, включаю­щей уравнение неразрывности потока, уравнение состояния и уравнение энергии (уравнение 1-го закона термодинамики применительно к газовому потоку).

Уравнение неразрывности характеризует неизменность массового расхо­да газа в любом сечении канала при установившемся течении. Это уравнение имеет вид

,

,

где G — массовый секундный расход газа; , F2 площади поперечных сече­ний канала; w1 , w2 — скорости в соответствующих сечениях; ρ12 плотности газа для тех же сечений потока (ρ=l/v).

Для одномерного газового потока в соответствии со вторым законом Ньютона (сила равна массе, умноженной на ускорение) можно записать сле­дующее соотношение [11]

— изменение давления по координате х;

— изменение скорости по координате х;

— сила, действующая на выделенный элементарный объем dV;

— ускорение элементарной массы газа pdV.

Последнее соотношение можно переписать в виде

.

Учитывая, что ρ=1/v, получим

(7.1)

Полученное соотношение показывает, что приращения давления dp и ско­рости dw имеют разные знаки. Следовательно, скорость одномерного потока возрастает с уменьшением давления.

Величина -vdp совпадает с формулой для располагаемой работы dl в уравнении первого закона термодинамики вида

.

Отсюда уравнение первого закона термодинамики для газового потока при отсутствии сил тяжести и сил трения в газе примет вид

, (7.2)

где приращение кинетической энергии газа на выделенном участке.

Так как , то

, (7.3)

где d(pv) = pdv+ vdpэлементарная работа проталкивания.

Последнее уравнение показывает, что теплота, сообщаемая газу, затрачи­вается на изменение внутренней энергии, на работу проталкивания и на из­менение внешней кинетической энергии газа.

Уравнения (7.2),(7.3) являются основными для потоков газа и пара, при­чем они справедливы как для обратимых (не сопровождающихся действием сил трения), так и для необратимых течений (при наличии сил трения). При наличии сил трения должна затрачиваться работа трения lтр, которая полностью переходит в теплоту qтр. Вследствие равенства lтр =qтр обе эти величи­ны, имеющие противоположные знаки, взаимно сокращаются.

Уравнение (7.3) с учетом гравитационных сил принимает вид

где gdz— элементарная работа против сил тяжести. Этой составляющей в га­зах ввиду ее малости обычно пренебрегают.

При адиабатном течении газа (dq=0)уравнение (7.2) принимает вид

(7.4)

После интегрирования получим

(7.5)

Таким образом, при адиабатном течении газа сумма удельных энтальпии и кинетической энергии остается неизменной.

Отметим, что уравнения (7.2), (7.3), (7.4) справедливы в случае, когда газ при своем движении совершает лишь работу расширения и не производит полезной технической работы (например, работа на лопатках турбины и проч.). При совершении технической работы уравнение первого закона тер­модинамики (7.3) для потока газа примет вид

, (7.6)

где dlтех — элементарная техническая работа.

Сравнивая уравнение (7.5) с уравнением первого закона термодинамики (2.17) для расширяющегося, но не перемещающегося газа, получим

.

Таким образом, техническая работа равна работе расширения газа за вы­четом работы проталкивания и работы, затрачиваемой на приращение кине­тической энергии газа.

Дата добавления: 2016-06-05 ; просмотров: 6997 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://lfirmal.com/osnovnye-uravneniya-gazovogo-potoka/

http://poznayka.org/s10260t1.html