Уравнение сохранения массы для струйки

Основные законы и уравнения гидромеханики.

1. Основные законы гидромеханики.

Закон сохранения массы и интегральной, векторной и дифференциальной формах. Уравнение неразрывности потока.

2. Закон изменения количества движения жидкости в интегральной, векторной и дифференциальной формах. Основное уравнение движения жидкости в векторной форме.

Рассмотрим в интегральной форме основные законы гидромеханики: закон сохранения массы, закон изменения количества движения и закон изменения момента количества движения для пространственного потока вязкой сжимаемой жидкости.

Применим к рассматриваемому объёму подход Лагранжа.

Для этого рассмотрим в данном потоке подвижный деформируемый объём жидкости V(t), состоящий из одних и тех же частиц жидкости. Пусть площадью поверхности S(t), имеющий в каждой подвижной точке плотность ρ и скорость v. Движение этого объёма будем рассматривать в неподвижной системе координат. Здесь x, y, z – координаты неподвижных фиксированных точек пространства Эйлера.

Обозначим как ранее F, Р – главные векторы массовых и поверхностных сил, действующих на этот объём

Закон сохранения массы жидкости:

Пусть в объёме V(t) – отсутствуют какие либо источники массы и энергии. «В любом подвижном объёме V(t), состоящем из одних и тех же частиц, масса жидкости сохраняется». Масса элементарно частицы с объёмом dV равна:

Здесь ρ – плотность жидкости.

Масса всех частиц в объёме V(t) равна:

(4.1)

Так как объём V состоит из одних и тех же частиц

Закон сохранения массы для потока в интегральном виде:

(4.2)

Получим этот же закон в дифференциальной форме:

В векторном анализе доказывается, что для любой вектор – функции , заданной в подвижном объёме V(t) с известным полем скоростей потока

(4.3)

Здесь — вектор скорости,

— проекции вектора скорости υ на нормаль поверхности.

Возьмём вместо ƒ плотность ρ. Получим:

Учитывая соотношение (4.2) получим:

Так как V(t) – объём произвольный, то

(4.4)

Это уравнение есть закон сохранения массы для потока в дифференциальном виде.

Его называют ещё уравнением неразрывности или сплошности потока. Если жидкость несжимаемая, .

(4.5)

Отсюда из (4.4) получим

Или ρ=const или (4.6)

Условие не сжимаемости для жидкости и газа.

Условия сохранения массы для одномерного стационарного потока в алгебраическом виде.

Для стационарного потока масса жидкости, которая проходит через любое сечение канала за одно и то же время одна и та же.

Отсюда следует, что если S↓, то υ↓

Вывод: «В узком сечении скорость всегда больше, а в широком – меньше».

2. Закон изменения количества движения жидкости для потока.

Закон изменения количества движения для частицы жидкости постоянной массой m записать в виде:

(4.9)

Здесь — главные векторы массовых и поверхностных сил.

Это соотношение называют уравнением движения частиц в векторной форме. По аналогии можно записать этот закон для подвижного объёма V(t) с массой M.

(4.10)

Это уравнение движения объёма жидкости в интегральной форме в самом общем виде. Здесь V(t) – подвижный деформируемый объём, состоящий из одних и тех же частиц среды. Перейдём от интегральной формы записи этого закона к его дифференциальной форме для любой точки подвижного объёма.

Так как то по теореме Гаусса – Остроградского:

(4.11)

Подставим это равенство в (4.10) . Получим:

Можно показать, что

Так как V(t) – произвольный объём, то интеграл от функции только тогда равен нулю, когда подинтегральная функция равна нулю. Отсюда

(4.12)

Это главное основное дифференциальное уравнение движения жидкости для произвольной фиксированной подвижной точки жидкости.

Основное уравнение гидростатики

Если жидкость неподвижна, то

(4.13)

Это основное уравнение гидростатики.

В векторной форме переход к переменной Эйлера.

Ускорение в точке (индивидуальная, субстанциональная, полная производная).

Локальная (местная) производная — конвективная.

Внимание! Здесь — ускорение производная подвижной точки жидкости, при условии, что — скорость задана в произвольной, одной и той де точки пространства переменных Эйлера.

Тогда

Ускорение в точке жидкости.

|следующая лекция ==>
Темперамент и характер|Уравнения пространственного движения реальных жидкостей и газов

Дата добавления: 2015-12-29 ; просмотров: 3973 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Кратко о гидродинамике: уравнения движения

Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.

В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.

Понятие сплошной среды

В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 10 23 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.

Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.

Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.

Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.

Уравнение неразрывности. Закон сохранения массы

Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:

И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):

где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.

В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:

Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.

Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:

Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:

Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:

которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.

Уравнение Эйлера. Закон сохранения импульса

Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.

Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:

При тех же самых условиях, что и выше, импульс в объёме может меняться за счёт:

  • конвективного переноса — т.е. импульс «утекает» вместе со скоростью через границу
  • давления окружающих элементов жидкости
  • просто за счёт внешних сил, например — от силы тяжести.

Соответствующие интегралы (порядок отвечает списку) дают такое соотношение:

Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:

Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.

В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:

Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.

Учёт вязкости. Уравнение Навье-Стокса

Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.

Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:

По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:

Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:

Оно допускает любой закон для вязкости.

Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:

в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:

где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости

носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:

Точные решения

Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.

Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.

Потенциальные течения

Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:

Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.

Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):

которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.

Простые течения вязкой жидкости

Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.

Сдвиговое течение Куэтта

Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.

В такой ситуации от уравнения Навье-Стокса останется уравнение вида v» = 0, и потому профиль скорости в канале окажется линейным:

Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.

Течение Пуазейля

Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:

На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.

Стекание слоя жидкости по наклонной плоскости

Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.

В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.

Закон сохранения массы и уравнение неразрывности

КРЕМЕНЧУГСКОЕ ЛЕТНОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ

АЭРОДИНАМИКА ВЕРТОЛЕТА МИ-8

(КОНСПЕКТ)

Исп. Скакалин Ю.А.

Рук. Игнатов Ю.А.

Г.Кременчуг

Г.

Г. Надым

Г.

Содержание

Закон сохранения массы и уравнение неразрывности_________________________________ 3

Основы аэродинамики несущего винта_____________________________________________ 4

Системы координат_____________________________________________________________ 5

Режимы работы несущего винта__________________________________________________ 6

Азимутальное положение лопасти_________________________________________________ 6

Зона обратного обтекания________________________________________________________ 7

Эффект косой обдувки___________________________________________________________ 8

Геометрические характеристики несущего винта_____________________________________ 9

Недостатки жесткого несущего винта______________________________________________ 9

Силы, действующие на лопасть в плоскости вращения_______________________________ 14

Аэродинамические силы, действующие на вертолет_________________________________ 16

Рулевой винт__________________________________________________________________ 17

Углы, определяющие положение вертолета в пространстве___________________________ 18

Центровка вертолета____________________________________________________________ 20

Равновесие и балансировка вертолета______________________________________________ 21

Назначение и работа стабилизатора________________________________________________ 22

Зависимость отклонения РУ (тарелки автомата перекоса) от скорости полета_____________ 24

Зависимость углов установки лопастей рулевого винта и отклонение педалей от скорости и режима полета__________________________________________________________________ 25

Статическая и динамическая устойчивость__________________________________________ 26

Управляемость и ее основные характеристики_______________________________________ 27

Потребная и располагаемая мощность горизонтального полета_________________________ 28

Режимы полета. Руление_________________________________________________________ 32

Режимы полета. Висение_________________________________________________________ 34

Эффект воздушной подушки______________________________________________________ 38

Зависимость Nпотр висения от взлетного веса, барометрической высоты, температуры и плотности воздуха_______________________________________________________________41

Режимы полета. Взлет____________________________________________________________ 42

Режимы полета. Набор высоты____________________________________________________ 44

Режимы полета. Горизонтальный полет_____________________________________________ 45

Особенности горизонтального полета_______________________________________________ 48

Разгон и торможение при горизонтальном полете_____________________________________ 49

Потребная и располагаемая мощность при разгоне на постоянной высоте_________________49

Режимы полета. Снижение________________________________________________________ 55

Режимы полета. Посадка__________________________________________________________ 56

Особые случаи полета. Отказ одного двигателя_______________________________________ 60

Особые случаи полета. Отказ двух двигателей________________________________________62

Режим самовращения несущего винта_______________________________________________64

Особые случаи полета. Отказ путевого управления____________________________________70

Режим вихревого кольца__________________________________________________________ 70

Срыв потока с лопастей__________________________________________________________ 71

Влияние обледенения на аэродинамические и летные характеристики вертолета__________ 72

Перетяжеление несущего винта____________________________________________________73

Земной резонанс________________________________________________________________ 73

Полеты с грузом на внешней подвеске______________________________________________ 74

Возможность опрокидывания на взлете при засасывании колеса________________________ 76

Интерференция РВ и НВ__________________________________________________________76

Аэродинамика– наука, изучающая законы силового взаимодействия газов с твердыми телами и ограничивающими поверхностями при их относительном перемещении.

Закон сохранения массы и уравнение неразрывности

При установившемся движении идеальной жидкости (несжимаемой) скорость обратно пропорциональна площади поперечного сечения струйки.

Выделим в воздухе струйку, рассмотрим сечение 1 и 2.

Обозначим: F1 и F2 –площади сечения

V1 и V2-скорости в сечении

p1 и p2-плотности в сечении

Скорость в каждой точке сечения будем считать постоянной (const). Поток будем считать установившимся, и неразрывным. Тогда для сечения 1 и 2 должен выполняться закон сохранения массы, т.е. масса воздуха за единицу времени через сечение1 должна равняться массе воздуха, вытекающего через сечение 2 за то же время. Математически это можно записать так:

m1 = p1V1F1 m2 = p2V2F2 m1 = m2 p1V1F1 = p2V2F2

На малых скоростях воздух можно считать несжимаемым, т.е. p1 = p2 = const.

Отсюда следует F1V1 = F2V2 = const. Это уравнение Эйлера (уравнение неразрывности). Из уравнения видно, что чем меньше сечение струйки F, тем больше скорость V в этом сечении.

Согласно уравнению Бернулли для параметров воздуха по сечениям можно сделать общий вывод, что чем выше скорость движения в каком-то сечении струйки, тем меньше давление в этом сечении.

Рассмотрев обтекание несущего профиля (лопасти, крыла) в установившемся потоке, выделим частицу воздуха, проходящую над профилем и под ним. В определенном сечении воздуха (трубке) из-за кривизны профиля сечение струйки над профилем уменьшается, по уравнению неразрывности скорость частицы воздуха в этом сечении увеличивается, а давление воздуха в этом сечении уменьшается. Создается разряжение воздуха над профилем. Под профилем сечение трубки из-за кривизны профиля уменьшается незначительно, разряжение воздуха гораздо меньше. Но так как в реальных несущих поверхностях всегда заложен положительный установочный угол, то поток воздуха под профилем из-за упругости воздуха сжимается, происходит уплотнение воздуха, которое воздействует на профиль снизу и вместе с разряжением сверху создает результирующую подъемную силу R, приложенную к центру давления и направленную вверх.


источники:

http://habr.com/ru/post/171327/

http://poisk-ru.ru/s8085t5.html