Уравнение состояния динамической системы представляет собой систему

Основные понятия современной теории управления

Страницы работы

Содержание работы

1. Основные понятия современной теории управления.

Оглавление

1.1. Переменные состояния и уравнения состояния динамической

1.2. Матричная передаточная функция………………………………5

1.3. Понятия управляемости и наблюдаемости системы……………5

1.1. Переменные состояния и уравнения состояния динамической системы.

Состояние динамической системы- это совокупность физических переменных характеризующих поведение системы в будущем при условии, что известны ее начальное состояние и приложенные воздействия.

Динамическая система может быть описана системой дифференциальных уравнений первого порядка

Запишем эту систему в матричной форме

(1.1)

В этом выражении X--матрица параметров (координат) состояния, А-матрица состояния, составленная из коэффициентов системы уравнений, B-матрица управления, U-матрица управляющих воздействий, n(t)-вектор возмущений размерности

Все или только некоторые параметры состояния для использования в целях управления должны быть измерены приборами специальной измерительной системы. Поэтому для полного описания динамической системы уравнение состояния (1.1) должно быть дополнено уравнением, связывающим переменные состояния и выходные переменные измерительной системы Эти выходные переменные в общем случае являются линейной комбинацией параметров состояния с некоторыми весами и связь между ними выражается системой линейных алгебраических уравнений

(1.2)

В векторно-матричной форме уравнение (1.2) можно записать следующим образом

(1.3)

Матрицу столбец Y= называют выходным вектором или вектором наблюдения. Матрица С размера называется матрицей выхода или матрицей наблюдения.

Решение векторно-матричного уравнения (1.1) при n(t)=0 можно найти так же, как и решение обыкновенного дифференциального уравнения 1-го порядка. Рассмотрим обыкновенное дифференциальное уравнение вида

В изображениях по Лапласу получим

Использовав процедуру обратного преобразования Лапласа, получим

(1.4)

Решение векторного уравнения (1.1) определяется аналогично.

В этом выражении I-единичная матрица. По аналогии с (1.4) запишем

(1.5)

Функция называется фундаментальной или переходной матрицей.

Методы вычисления фундаментальной матрицы.

а).Метод разложения в ряд.

Ограничившись конечным числом членов ряда и произведя их суммирование, можно получить приближенное выражение для фундаментальной матрицы.

б).Метод, основанный на определении собственных значений матрицы состояния.

В соответствии с преобразованием Лапласа получим

(1.6)

Определение фундаментальной матрицы сводится к вычислению собственных значений матрицы состояния и последующему использованию процедуры обратного преобразования Лапласа.

в).Метод, основанный на теореме Сильвестра.

Предположим, что имеется некоторая функция f(A) от матрицы А, которую можно представить в виде степенного ряда

Допустим, что все собственные числа матрицы А различны. Тогда согласно теореме Сильвестра

где

Здесь собственные числа матрицы состояния А.

В частном случае, когда получим

(1.7)

После определения фундаментальной матрицы строится решение (1.5).

Часто возникает задача найти описание системы в понятиях пространства состояний, если известна ее передаточная функция в обычном понимании, т.е. в системе “вход-выход”. Пусть эта передаточная функция имеет вид

Дифференциальное уравнение в изображениях по Лапласу будет следующим

Допустим вначале, что m=n.

Сделаем замену и перейдем к системе уравнений первого порядка.

(1.8)

Для определения неизвестных коэффициентов проделаем следующие операции:

а) перейдем в системе (1.8) к изображениям по Лапласу при нулевых начальных условиях;

б) найдем характеристический определитель полученной алгебраической системы уравнений;

в)решим эту систему уравнений относительно переменной

г)учитывая, что найдем выражения для x(s) и, приравнивая числитель полученного выражения числителю исходной передаточной функции, получим рекуррентные соотношения для определения коэффициентов

(1.9)

В практических приложениях всегда m

Пространство состояний в задачах проектирования систем оптимального управления

Введение

Исследование системы управления во временной области с помощью переменных состояния широко используется в последнее время благодаря простоте проведения анализа.

Состоянию системы соответствует точка в определённом евклидовом пространстве, а поведение системы во времени характеризуется траекторией, описываемой этой точкой.

При этом математический аппарат включает готовые решения по аналоговому и дискретному LQR и DLQR контролерам, фильтра Калмана, и всё это с применением матриц и векторов, что и позволяет записывать уравнения системы управления в обобщённом виде, получая дополнительную информацию при их решении.

Целью данной публикации является рассмотрение решения задач проектирования систем оптимального управления методом описания пространства состояний с использованием программных средств Python.

Теория кратко

Векторно-матричная запись модели линейного динамического объекта с учетом уравнения измерения принимает вид:

(1)

Если матрицы A(t), B(t) и C(t) не зависят от времени, то объект называется объектом с постоянными коэффициентами, или стационарным объектом. В противном случае объект будет нестационарным.

При наличии погрешностей при измерении, выходные (регулируемые) сигналы задаются линеаризованным матричным уравнением:

(2)

где y(t) – вектор регулируемых (измеряемых) величин; C(t) – матрица связи вектора измерений с вектором состояний; v(t) – вектор ошибок измерений (помехи).

Структура линейной непрерывной системы, реализующая уравнения (1) и (2), приведена на рисунке:

Данная структура соответствует математической модели объекта, построенной в пространстве состояний его входных x(t), u(t), выходных y(t) и внутренних, или фазовых координат x(t).

Для примера рассмотрим математическую модель двигателя постоянного тока с независимым возбуждением от постоянных магнитов. Система уравнений электрической и механической частей двигателя для рассматриваемого случая будет выглядеть так:

(3)

Первое уравнение отражает взаимосвязь между переменными в цепи якоря, второе — условия механического равновесия. В качестве обобщенных координат выберем ток якоря I и частоту вращения якоря ω.

Управлением являются напряжение на якоре U, возмущением — момент сопротивления нагрузки Mc. Параметрами модели являются активное сопротивление и индуктивность цепи и якоря, обозначенные соответственно , и , а также приведенный момент инерции J и конструктивные постоянные се и см (в системе СИ: Cе=См).

Разрешая исходную систему относительно первых производных, получим уравнения двигателя в пространстве состояний.

(4)

В матричном виде уравнения (4) примут вид (1):

(5)

где вектор обобщенных координат , вектор управлений U =u (в рассматриваемом случае он является скаляром), вектор (скаляр) возмущений Mc=f. Матрицы модели:

(6)

Если в качестве регулируемой величины выбрать частоту вращения, то уравнение измерения запишется в виде:

(7)

а матрица измерений примет вид:

Сформируем модель двигателя в Python. Для этого вначале зададим конкретные значения параметров двигателя: U = 110 В; R =0,2 Ом; L = 0,006 Гн; J =0,1 кг/м2;Ce =Cm=1,3 В/С и найдем значения коэффициентом матриц объекта из (6).

Разработка программы формирующей модель двигателя с проверкой матриц на наблюдаемость и управляемость:

При разработке программы использовалась специальная функция def matrix_rank для определения ранга матрицы и функции, приведенные в таблице:

Результаты работы программы:

Матрица А:
[[ -33.33333333 -216.66666667]
[ 13. 0. ]]
Матрица B:
[[166.66666667]
[ 0. ]]
Матрица C:
[[0 1]]
Скаляр D:
0
Передаточная функция двигателя:
2167/(s^2 + 33.33 s + 2817)
Ранг матрицы управляемости: 2
Ранг матрицы наблюдаемости: 2

1. На примере двигателя постоянного тока с независимым магнитным возбуждением рассмотрена методика проектирования управления в пространстве состояний;

2. В результате работы программы получены передаточная функция, переходная характеристика, а так же ранги матриц управляемости и наблюдаемости. Ранги совпадают с размерностями пространства состояний, что подтверждает управляемость и наблюдаемость модели.

Пример проектирования оптимальной системы управления с дискретным dlqr контролером и полной обратной связью

Определения и терминология

Линейно-квадратичный регулятор (англ. Linear quadratic regulator, LQR) — в теории управления один из видов оптимальных регуляторов, использующий квадратичный функционал качества.

Задача, в которой система описывается линейными дифференциальными уравнениями, а показатель качества, представляет собой квадратичный функционал, называется задачей линейно-квадратичного управления.

Широкое распространение получили линейно-квадратичные регуляторы (LQR) и линейно-квадратичные гауссовы регуляторы (LQG).

Приступая к практическому решению задачи всегда нужно помнить об ограничениях

Для синтеза оптимального дискретного регулятора линейных стационарных систем нужна функция численного решения уравнения Беллмана.Такой функции в библиотеке Python Control Systems [1] нет, но можно воспользоваться функцией для решения уравнения Риккати, приведенной в публикации [2]:

Но нужно ещё учесть ограничения на синтез оптимального регулятора, приведенные в [3]:

  • система, определяемая матрицами (A, B) должна быть стабилизируема;
  • должны выполняться неравенства S> 0, Q – N/R–N.T>0, пара матриц (Q – N/R–N.T,
    A – B/R–B.T) не должна иметь наблюдаемые моды с собственными значениями на
    действительной оси.

После копаний в обширной и не однозначной теории, которую, по понятным причинам, я не привожу, задачу удалось решить, и все ответы можно прочитать прямо в комментариях к коду.

Структурная схема регулятора системы управления с обратной связью по всем переменным состояния изображена на рисунке:

Для каждого начального состояния x0 оптимальный линейный регулятор порождает оптимальное программное управление u*(x, k) и оптимальную траекторию х*(k).

Программа, формирующая модель оптимального управления с dlqr контролером

K=
[[ 0.82287566 -0.17712434]
[ 0.82287566 -0.17712434]]
P=
[[ 3.73431348 -1.41143783]
[-1.41143783 1.16143783]]
E=
[0.17712434+0.17712434j 0.17712434-0.17712434j]

Динамика состояний и управлений: x1, x2, u1, u2.

Вывод

Отдельные задачи оптимального управления по типу приведенных можно решать средствами Python, комбинируя возможности библиотек Python Control Systems, SciPy,NumPy, что, безусловно, способствует популяризации Python, учитывая, что ранее такие задачи можно было решать только в платных математических пакетах.

Уравнение состояния динамической системы представляет собой систему

Тема:«Векторно-матричные модели систем управления в непрерывном времени»

Понятие пространства состояний

Современная теория автоматического управления оперирует с векторно-матричными моделями динамических систем. При этом рассматриваются в общем случае многомерные системы, т.е. системы произвольного порядка со многими входами и многими выходами, в связи, с чем широко используются векторно-матричные уравнения и аппарат векторной алгебры. Для получения векторно-матричной модели (ВММ) исследуемая динамическая система представляется в виде “черного ящика” с некоторым числом входных и выходных каналов (рис. 1.1, а).

Рис.1.1. Скалярное (а) и векторное (б) представления динамической системы в виде «черного ящика»

Все переменные, характеризующие систему, можно разделить на три группы.

1. Входные переменные или входные воздействия, генерируемые системами, внешними по отношению к исследуемой системе. Они характеризуются вектором входа.

r — число входов

2. Выходные переменные, характеризующие реакцию системы на указанные входные воздействия. Представляются вектором выхода

m — число выходов.

3. Промежуточные переменные, характеризующие внутреннее состояние системы, — переменные состояния, представляются вектором

n — число переменных состояния.

Таким образом, совокупность входов можно рассматривать как один обобщенный вход, на который воздействует вектор входа u, совокупность выходов как вектор y, а совокупность промежуточных координат, характеризующих состояние системы, — в виде вектора состояния x (см. рис. 1.1, б).

Состояние системы — это та минимальная информация о прошлом, которая необходима для полного описания будущего поведения (т.е. выходов) системы, если поведение ее входов известно.

Собственно система, ее входы и выходы — это три взаимосвязанных объекта, которые в каждой конкретной ситуации определяются соответственно математической моделью системы, заданием множеств входных и выходных переменных.

Решение задач анализа и синтеза связано с исследованием состояний системы, множество которых образует пространство состояний,.

Векторно-матричные модели в непрерывном времени

В общем случае динамическая система в непрерывном может быть описана парой матричных уравнений:

где Fn-мерная вектор-функция системы; Qm-мерная вектор-функция выхода.

Матричное уравнение (1.1) называют уравнением состояния системы. Его решение, удовлетворяющее начальному условию , дает вектор состояния системы

Матричное уравнение (1.2), определяющее выходные переменные в зависимости от x(t) и u(t), называют уравнением выхода.

В частном случае зависимости могут быть линейными комбинациями переменных состояния xi и входных переменных uq. При этом динамическая система описывается в векторно-матричной форме:

Переход к стационарным моделям позволяет оперировать с коэффициентными матрицами, т.е. со стационарными уравнениями

А — функциональная матрица размером n x n, называемая матрицей состояния системы (объекта);

В — функциональная матрица размером n x r, называемая матрицей управления (входа);

С — функциональная матрица размером m x n, называемая матрицей выхода по состоянию;

D — функциональная матрица размером m x r, называемая матрицей выхода по управлению.

Очень часто D=0, т.е. выход непосредственно не зависит от входа.

В дальнейшем под векторно-матричной моделью объекта (системы) будем понимать описание ее динамического поведения в классе стационарных непрерывных линейных систем, представленное в виде уравнений (1.6), (1.7).

Таким образом, ВММ имеет единую форму представления, что значительно облегчает алгоритмизацию и компьютерную реализацию проектных процедур и проектных операций структурно-параметрического синтеза и анализа систем управления. Однако с использованием ВММ может быть получено лишь приближенное проектное решение, которое потребует дальнейшего уточнения, так как такие модели отображают динамическое поведение реального объекта лишь в классе стационарных линейных систем.

Построение ВММ реального объекта сопряжено с проблемами линеаризации исходного математического описания и приведения его к структурированному виду — форме Коши.

Если мы знаем физическое описание системы и можем записать уравнения, описывающие поведения ее отдельных частей, то получить уравнения состояния системы обычно сравнительно не трудно. Покажем эту процедуру на нескольких примерах.

Пример 1.1. Получим уравнения состояния для простейшей RLC-цепи, показанной на рис 1.2.

Динамическое поведение этой системы при полностью определяется, если известны начальные значения и входное напряжение U(t) при . Следовательно, можно выбрать в качестве переменных состояния, то есть

Для указанных переменных состояния можно записать дифференциальные уравнения

или в векторно-матричной форме

Таким образом для рассматриваемой системы матрицы А, В, С векторно-матричной модели будут иметь следующий вид:

Пример 1.2. На рис. 1.3. показан электродвигатель постоянного тока независимого возбуждения, работающий при постоянном магнитном потоке (Ф=const).

Дифференциальные уравнения для такого объекта могут быть записаны относительно следующих переменных состояния: — скорости вращения ротора, тока якоря i(t), углового перемещения ротора . При использовании знакомых зависимостей для электродвижущей силы и вращающего момента двигателя получим уравнение электрической цепи

и уравнения вращающейся части

где J – приведенный момент инерции электродвигателя.

Представляя векторы состояния, входа и выхода как получим следующую векторно-матричную модель электродвигателя постоянного тока

То есть для рассматриваемой системы матрицы А, В, С векторно-матричной модели будут иметь следующий вид:

Пример 1.3. Построим векторно-матричную модель электромеханического объекта — электропривода постоянного тока, приводящего в движение через механический редуктор тяжелую платформу. Функциональная схема такого объекта приведена на рис. 1.4.

Здесь легко выделить три функциональных элемента, соответствующие трем видам преобразования энергии:

преобразователь, осуществляющий управляемое преобразование электрической энергии;

двигатель, выполняющий преобразование электрической энергии в механическую, — электромеханический преобразователь;

механизм, осуществляющий передачу механической энергии от вала двигателя через редуктор к рабочему органу — платформе.

При использовании общеизвестных допущений [5] и обозначений координат и параметров такого объекта его динамическое поведение при МС=0 описывается следующей системой линейных дифференциальных уравнений:

Если компонентами вектора состояния выбрать , где Uп – напряжение преобразователя, iя — ток электродвигателя, — скорость вращения электродвигателя, МУ — момент упругости механизма, — скорость вращения механизма, то элементы векторно-матричной модели

принимают следующий вид:

После подстановки реальных значений параметров объекта, которые приведены в табл. 1.1, компоненты матриц состояния А и управления В принимают вид (1.13).

На рис. 1.5. приведено окно редактирования векторно-матричной модели (1.13) в среде Компьютерного комплекса функционального проектирования динамических систем.

Контрольные вопросы к лекции № 1.

1. Какие переменные при построении математического описания системы принято называть

a) входными переменными;

b) выходными переменными;

c) переменными состояния?

2. Математическое описание объекта с одним входом и одним выходом представлено структурной схемой, содержащей q элементов, представленных передаточной функцией общего вида

Как в этом случае можно определить размерность пространства состояния для описания этого объекта?

3. Математическое описание объекта с двумя входами и одним выходом y(t) представлено следующим уравнением в операторной форме

Какова в этом случае будет размерность пространства состояния n для описания этого объекта?

4. Выберите из приведенных ниже записей возможные формы представления уравнения состояния для непрерывных систем.

5. Объект управления имеет r – входов, m — выходов, его математическое описание в непрерывном времени содержит n дифференциальных уравнений первого порядка. Какова в этом случае будет размерность матрицы состояния?

6. Сформируйте векторно-матричную модель фильтра, электрическая схема которого представлена на рис. 1.6.

Здесь следует учесть, что

  • объект имеет один вход — U1 один выход — iH; все параметры электрической схемы R1, R2, L, C1, C2, RH известны и являются постоянными;
  • могут быть использованы следующие обозначения

7.При составлении математического описания динамических процессов в упругом электромеханическом объекте, влючающем в себя электродвигатель постоянного тока независимого возбуждения (Ф=const) и механизм, модель которого представляется двухмассовой системой (см. пример 1.3), могут быть использованы следующие переменные:

  • iя — ток электродвигателя,
  • — скорость вращения электродвигателя,
  • Му – упругий момент механизма,
  • — скорость вращения механизма,
  • — угол поворота ротора электродвигателя,
  • l – линейное перемещение механизма.

Какие из этих переменных, и в какой последовательности включены в состав вектора состояния приведенной ниже векторно-матричной модели?

ОТВЕТЫ

a) переменные, характеризующие реакцию системы на входные воздействия;

b) переменные, генерируемые системами, внешними по отношению к исследуемой системе;

c) промежуточные переменные, характеризующие внутреннее состояние системы.


источники:

http://habr.com/ru/post/353318/

http://drive.ispu.ru/elib/kolganov2/l1.html