Уравнение состояния идеального газа 10 класс

Уравнение состояния идеального газа 10 класс

«Физика — 10 класс»

В этой главе речь пойдёт о следствиях, которые можно извлечь из понятия температуры и других макроскопических параметров. Основное уравнение молекулярнокинетической теории газов вплотную приблизило нас к установлению связей между этими параметрами.

Как можно рассчитать массу воздуха в кабинете физики?
Какие параметры воздуха будут необходимы для определения этой массы?

Мы детально рассмотрели поведение идеального газа с точки зрения молекулярно-кинетической теории. Была определена зависимость давления газа от концентрации его молекул и температуры (см. формулу (9.17)).

На основе этой зависимости можно получить уравнение, связывающее все три макроскопических параметра р, V и Т, характеризующие состояние идеального газа данной массы.

Формулой (9.17) можно пользоваться только до давления порядка 10 атм.

Уравнение, связывающее три макроскопических параметра р, V и Т, называют уравнением состояния идеального газа.

Подставим в уравнение р = nkT выражение для концентрации молекул газа. Учитывая формулу (8.8), концентрацию газа можно записать так:

где NA — постоянная Авогадро, m — масса газа, М — его молярная масса. После подстановки формулы (10.1) в выражение (9.17) будем иметь

Произведение постоянной Больцмана k и постоянной Авогадро NA называют универсальной (молярной) газовой постоянной и обозначают буквой R:

R = kNA = 1,38 • 10 -23 Дж/К • 6,02 • 10 23 1/моль = 8,31 Дж/(моль • К). (10.3)

Подставляя в уравнение (10.2) вместо kNA универсальную газовую постоянную R, получаем уравнение состояния идеального газа произвольной массы

Единственная величина в этом уравнении, зависящая от рода газа, — это его молярная масса.

Из уравнения состояния вытекает связь между давлением, объёмом и температурой идеального газа, который может находиться в двух любых состояниях.

Если индексом 1 обозначить параметры, относящиеся к первому состоянию, а индексом 2 — параметры, относящиеся ко второму состоянию, то согласно уравнению (10.4) для газа данной массы

Правые части этих уравнений одинаковы, следовательно, должны быть равны и их левые части:

Известно, что один моль любого газа при нормальных условиях (р0 = 1 атм = 1,013 • 10 5 Па, t = 0 °С или Т = 273 К) занимает объём 22,4 л. Для одного моля газа, согласно соотношению (10.5), запишем:

Мы получили значение универсальной газовой постоянной R.

Таким образом, для одного моля любого газа

Уравнение состояния в форме (10.4) было впервые получено великим русским учёным Д. И. Менделеевым. Его называют уравнением Менделеева—Клапейрона.

Уравнение состояния в форме (10.5) называется уравнением Клапейрона и представляет собой одну из форм записи уравнения состояния.

Б. Клапейрон в течение 10 лет работал в России профессором в институте путей сообщения. Вернувшись во Францию, участвовал в постройке многих железных дорог и составил множество проектов по постройке мостов и дорог.

Его имя внесено в список величайших учёных Франции, помещённый на первом этаже Эйфелевой башни.

Уравнение состояния не надо выводить каждый раз, его надо запомнить. Неплохо было бы помнить и значение универсальной газовой постоянной:

R = 8,31 Дж/(моль • К).

До сих пор мы говорили о давлении идеального газа. Но в природе и в технике мы очень часто имеем дело со смесью нескольких газов, которые при определённых условиях можно считать идеальными.

Самый важный пример смеси газов — воздух, являющийся смесью азота, кислорода, аргона, углекислого газа и других газов. Чему же равно давление смеси газов?

Для смеси газов справедлив закон Дальтона.

Давление смеси химически невзаимодействующих газов равно сумме (ЦЩй их парциальных давлений

где рi — парциальное давление i-й компоненты смеси.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основные положения МКТ. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 20. Уравнение состояния идеального газа. Газовые законы

Перечень вопросов, рассматриваемых на уроке:

1) уравнение состояния идеального газа и уравнение Менделеева — Клапейрона;

2) закон Дальтона, парциальное давление, закон Авогадро;

3) газовые законы и границы их применимости;

4) графики изохорного, изобарного и изотермического процесса;

5) определение по графикам характера процессов и макропараметров идеального газа;

6) применение модели идеального газа для описания поведения реальных газов.

Глоссарий по теме

Уравнение, связывающее три макроскопических параметра давление, объём и температура, называют уравнением состояния идеального газа.

Парциальное давление – давление отдельно взятого компонента газовой смеси, равно давлению, которое он будет оказывать, если занимает весь объем при той же температуре.

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами (изопроцессами).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении называют изобарным.

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика. 10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 209 – 218.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2009.

Открытые электронные ресурсы по теме урока:

Теоретический материал для самостоятельного изучения

Уравнение Клапейрона при m = const: отношение произведения давления и объёма к температуре есть величина постоянная для постоянной массы газа:

Если изменяется какой-либо макроскопический параметр газа постоянной массы, то два других параметра изменятся таким образом, чтобы указанное соотношение осталось постоянным.

Отношение произведения давления и объёма к температуре равно универсальной газовой постоянной для одного моля идеального газа.

Уравнение Менделеева при v = 1 моль

Произведение постоянной Больцмана и постоянной Авогадро называется универсальной газовой постоянной.

уравнение состояния идеального газа.

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона».

Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

где pi– парциальное давление i-й компоненты смеси.

Парциальное давление – давление отдельно взятого компонента газовой смеси, равное давлению, которое он будет оказывать, если занимает весь объём при той же температуре.

Один моль любого газа при нормальных условиях занимает один и тот же объём равный:

V0=0,0224м 3 /моль=22,4дм 3 /моль.

Это утверждение называется законом Авогадро

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами (изопроцессами).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

Для газа данной массы произведение давления на объём постоянна, если температура газа не меняется — закон Бойля – Мариотта.

Изотерма соответствующая более высокой температуре T1, лежит на графике выше изотермы, соответствующей более низкой температуре T2.

Если значения давления и температуры в различных точках объёма разные, то в этом случае газ находится в неравновесном состоянии.

Равновесное состояние — это состояние, при котором температура и давление во всех точках объёма одинаковы.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении называют изобарным.

Для газа данной массы отношение объема к температуре постоянно, если давление не изменяется — закон Гей-Люссака.

Изобара соответствующая более высокому давлению p2 лежит на графике ниже изобары соответствующей более низкому давлению p1.

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

При данной массе газа отношение давление газа к температуре постоянно, если объем газа не изменяется — закон Шарля.

Изохора соответствующая большему объему V2 лежит ниже изохоры, соответствующей меньшему объему V1.

Примеры и разбор решения заданий

1. Установите соответствие между физическими величинами и приборами для их измерения. К каждой позиции первого столбца подберите нужную позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

Урок по физике в 10 классе. Тема урока «Уравнение состояния идеального газа»
методическая разработка (физика, 10 класс) по теме

На уроке выводится формула уравнения состояния идеального газа. Кроме того, рассматриваются важные следствия, вытекающие из этого уравнения. Урок сопровождается показом презентации.

Скачать:

ВложениеРазмер
urok_v_10_klasse._uravnenie_sostoyaniya_idealnogo_gaza.rar1.14 МБ

Предварительный просмотр:

Власова Надежда Ивановна

МКОУ Петропавловская СОШ

«Уравнение состояния идеального газа»

Тип урока : комбинированный.

Дидактическая цель : создать условия для восприятия, осмысления и первичного закрепления новой учебной информации об идеальном газе.

  1. Образовательные: установление вида связи между макроскопическими параметрами состояния вещества и знакомство со следствиями, вытекающими из уравнения состояния идеального газа; формирование умений применять полученные знания при решении задач.
  2. Воспитательные: создание условий для самостоятельного поиска решений проблемных ситуаций и проявления инициативы; формирование познавательного интереса к изучаемому материалу; формирование стремления к глубокому усвоению теоретических знаний через решение задач, воспитание чувства патриотизма и гордости за свою Родину.
  3. Развивающие : развитие мышления и мировоззрения обучающихся через использование метода научного познания; осуществление межпредметных связей с математикой при выводе уравнения Менделеева — Клапейрона, развитие навыков самообразования.

Раздаточный материал : карточка для индивидуальной работы; домино для закрепления материала, папка «Учись учиться».

ТСО : компьютер, мультимедийный проектор, презентация к уроку, выполненная в программе Power Point.

I. Проверка знаний.

1. Организационный момент : приветствие, готовность к уроку.

2 .Актуализация опорных знаний; мотивация учебной деятельности.

1 .(Сообщение ученика)

Теплый воздух, водород и гелий применяют в летательных аппаратах: аэростатах, стратостатах, воздушных шарах и дирижаблях. Воздушные шары чаще используют в спортивных и научно-познавательных целях. Стратостаты предназначены для исследования верхних слоев атмосферы. Они находят применение в метеорологии, для запуска автоматических метеостанций. Управляемые аэростаты называют дирижаблями. Основные задачи, которые возлагаются на дирижабли сегодня,- перевозка грузов, укладка нефтегазовых труб, установка опорных линий электропередач, работа в труднодоступных районах, где нет дорог. В последнее время летательные аппараты используют еще и в рекламных целях.

2. (Дополнение учителя). (Слайд 1-7)

На слайде летательные аппараты.

Вы видите один из первых жестких дирижаблей «Цеппелин» -дирижабль 1890 года. Сейчас в летательных аппаратах используют в основном гелий, так как пожароопасность водородных летательных аппаратов резко ограничивает его применение как наполнителя.

Не всегда полеты названных аппаратов заканчивались благополучно. 30 января 1934 года в небо поднялся аэростат «Осоавиахим – 1». Он достиг рекордной высоты на тот момент – 22 км, но из-за плохой погоды обледенел и рухнул вниз. Погибли Андрей Васенко – конструктор, Илья Усыскин – физик и пилот Павел Федосеенко, наш земляк, уроженец г. Острогожска. Одна из улиц города носит его имя.

Тема сегодняшнего урока:

«Уравнение состояния идеального газа».

  1. Познакомиться с уравнением состояния идеального газа;
  2. записать это уравнение в классическом виде;
  3. сформулировать следствия, вытекающие из уравнения состояния идеального газа;
  4. научиться использовать полученные уравнения при решении задач.

А чтобы достичь этих целей, повторим ранее изученный материал об идеальном газе.

1 ). Решить задачу по карточке (индивидуальная работа у доски).

Задача . Определить температуру, при которой тепловая скорость движения молекул водорода равна 2 км / с.

Дополнительный вопрос: «Какие микроскопические параметры характеризуют газ?»

  1. Это масса молекулы, ее скорость, импульс и кинетическая энергия поступательного движения частицы.

Так как нам предстоит получить уравнение состояния идеального газа, давайте вспомним, что такое «идеальный газ». Это идеализированная модель, согласно которой считают, что: …

Перед вами слайд, на котором записаны 9 постулатов МКТ.

Все ли они верны для идеального газа? (Не верны 3, 6, 9)

Итак, верно ли, что …

Модель «Идеальный газ»

  1. В любом макроскопическом объеме газа число молекул очень велико.
  2. Размеры молекул пренебрежительно малы по сравнению с расстояниями между ними.
  3. Между молекулами существуют силы взаимодействия- силы притяжения и силы отталкивания.
  4. Все соударения молекул являются абсолютно упругими.
  5. Молекулы взаимодействуют друг с другом или со стенкой сосуда только в момент соударения.
  6. Значительная средняя потенциальная энергия взаимодействия препятствует изменению среднего расстояния между ними.
  7. Молекулы находятся в непрерывном хаотическом движении.
  8. К движению отдельной молекулы применимы законы механики Ньютона.
  9. Частицы колеблются около положений равновесия, взаимодействуя с ближайшими соседями.

2. Проверка знаний ранее изученных формул.

Учащимся демонстрируется слайд, на котором написаны формулы, но вместо некоторых величин стоит знак ?. Заменить знак ? недостающими буквами .


источники:

http://resh.edu.ru/subject/lesson/6292/conspect/

http://nsportal.ru/shkola/fizika/library/2012/08/26/urok-po-fizike-v-10-klasse-tema-uroka-uravnenie-sostoyaniya