Уравнение состояния идеального политропного газа

Energy
education

сайт для тех, кто хочет изучать энергетику

Термодинамика и тепломассообмен

Идеальный газ

Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

4. Процессы изменения состояния идеальных газов

К основным термодинамическим процессам относят следующие четыре процесса:

  • изохорный – при постоянном объеме ($v = const$);
  • изобарный – при постоянном давлении ($р = const$);
  • изотермический – при постоянной температуре ($Т = const$);
  • адиабатный – без теплообмена с внешней средой ($\mathrmq = 0$).

В реальных условиях указанные ограничения практически не выполняются. В связи с этим в технической термодинамике существует понятие политропного процесса как общего случая термодинамического процесса. Предполагается, что политропный процесс обратим и теплоемкость рабочего тела (идеального газа) $с_n$ в ходе данного процесса не изменяется ($c_n=const$). Уравнение политропного процесса имеет вид:

где $n=\frac$ – постоянная величина, называемая показателем политропы. Политропных процессов существует бесчисленное множество, т.к. $–∞ Изохорный процесс.

Изобарный процесс – термодинамический процесс, происходящий в системе при постоянном давлении. Параметры состояния идеального газа на изобаре связаны соотношением:

Отсюда следует, что чем выше температура газа, тем больше его удельный объем (т.е. тем меньше плотность). При этом величина v на изобаре при повышении температуры растет тем быстрее, чем меньше давление.

Работа расширения системы в изобарном процессе определяется следующим образом:

Для идеального газа работа расширения системы в изобарном процессе может быть представлена также в следующем виде:

Количество теплоты, сообщаемой системе при нагреве (или отдаваемой системой при охлаждении) в изобарном процессе, определяется следующим образом:

$$\mathrmq=\mathrmh+\mathrml’=\mathrmh-v \mathrmp=\mathrmh=c_p \mathrmT,$$

Изменение энтропии в изобарном процессе, т.е. разность энтропий, соответствующих состояниям 1 и 2, определяется из соотношения:

Изотермический процесс – процесс изменения состояния термодинамической системы при постоянной температуре.

Для идеального газа давления и объемы в любых точках на изотерме связаны уравнением Бойля—Мариотта, т.е. зависимость объема от давления на изотерме для идеального газа имеет характер гиперболы:

Работа расширения системы в изотермическом процессе между точками изотермы 1 и 2 определяется с помощью общего соотношения:

Количество теплоты , подводимой к системе (или отдаваемой системой) в изотермическом процессе, определяется из известного соотношения:

Количество работы, совершаемой идеальным газом в изотермическом процессе, равно количеству теплоты, подведенной к этому газу:

Изменение энтропии в изотермическом процессе, т.е. разность энтропий, соответствующих состояниям 1 и 2, вычисляется следующим способом:

Адиабатный процесс – такой термодинамический процесс, в котором к системе не подводится и от системы не отводится теплота. Термодинамическую систему, в которой протекает адиабатный процесс, можно представить себе в виде некоторого объема, ограниченного оболочкой, снабженной идеальной теплоизоляцией, абсолютно не пропускающей теплоту. В реальных условиях процесс является адиабатным в тех случаях, когда система снабжена хорошей теплоизоляцией или когда процесс расширения (сжатия) газа происходит настолько быстро, что не успевает произойти скольконибудь заметный теплообмен газа с окружающей средой.

Поскольку для обратимого процесса $\mathrmq=T \mathrms$, получаем, что в обратимом адиабатном процессе $\mathrms=0$, т.е. энтропия системы сохраняется постоянной. Иными словами, обратимый адиабатный процесс является в то же время изоэнтропным процессом.

Для любого состояния системы в изоэнтропном процессе справедливо соотношение Пуассона:

Если показатель изоэнтропы $k$ изменяется с изменением состояния системы и известен характер зависимости $k$ на изоэнтропе, то для расчета величины $p_2$ по известным $p_1$, $v_1$ и $v_2$ следует вычислить интеграл, стоящий в правой части по известным значениям $k$.

Для идеального газа показатель изоэнтропы $k$ можно определить:

Так как для идеального газа $c_p=c_v+µR$, тогда:

Как известно, теплоемкости идеального газа слабо изменяются с температурой, поэтому и величину $k$ с высокой степенью точности можно считать практически не зависящей от температуры. Известно, что мольная изохорная теплоемкость $μс_v$ идеального газа равна примерно $13$ кДж/(кмоль·К) для одноатомного идеального газа, $21$ кДж/(кмоль·К) для двухатомного и $29$ кДж/(кмоль·К) для трех- и многоатомного газа. Поскольку $µR≈8.3$ кДж/(кмоль·К), то получаем следующие примерные значения показателя изоэнтропы $k$ идеального газа: одноатомный $k=1.67$, двухатомный $k=1.40$, трех- и многоатомный $k=1.29$. Для воздуха показатель изоэнтропы в идеально-газовом состоянии равен примерно $1.40$.

Для изоэнтропного процесса в идеальном газе можно получить соотношения, связывающие между собой значения $p$, $Т$ и $v$:

Работа расширения системы в изоэнтропном процессе определяется следующим образом:

Таким образом, в адиабатном процессе работа расширения системы совершается за счет убыли внутренней энергии системы. Это и понятно – ведь в адиабатном процессе к системе нет притока теплоты извне и единственный источник энергии для совершения работы – внутренняя энергия самой системы.

В случае идеального газа уравнения для расчета работы расширения могут быть представлены также в иной форме:

Следует подчеркнуть, что уравнение выше пригодно для расчета в том случае, если в интервале параметров между точками 1 и 2 показатель изоэнтропы $k$ сохраняется постоянным.

Политропные процессы. Политропными называют термодинамические процессы, удовлетворяющие уравнению:

при произвольном, постоянном для данного процесса значении $n$.

Понятие о политропных процессах было введено в термодинамике по аналогии с понятием об адиабатных процессах. Уравнение политропного процесса по внешнему виду сходно с уравнением адиабаты, однако существенная разница между этими уравнениями состоит в том, что если показатель изоэнтропы (адиабаты) $k$ является в общем случае величиной переменной, то уже само понятие политропного процесса основано на предположении о том, что показатель политропы n является постоянной величиной. В политропном процессе к системе может подводиться (или отводиться от нее) теплота.

Понятие о политропных процессах широко используется главным образом при изучении процессов сжатия и расширения в газовых двигателях, зачастую политропные процессы оказываются удобными для аппроксимации действительных газовых процессов в двигателях. Реальные процессы сжатия в газовых двигателях и компрессорах часто не являются ни адиабатными, ни изотермическими, а занимают промежуточное положение между этими двумя видами процессов. Поэтому обычно встречаемые на практике значения показателя n политропного процесса лежат в интервале от $1$ до $k$.

Если политропный процесс осуществляется в идеальном газе, то нетрудно получить зависимости между начальными и конечными параметрами процесса:

Работа расширения системы в политропном процессе между точками 1 и 2 определяется с помощью уравнения:

Это уравнение можно преобразовать в вид:

Количество теплоты , подводимой к системе (или отводимой от нее) в политропном процессе можно определить с помощью уравнения первого закона термодинамики:

Тогда теплоемкость идеального газа в политропном процессе:

Изменение энтропии системы в политропном процессе, т.е. разность энтропий, соответствующих точкам 1 и 2 на политропе, определяется из соотношения:

Для того чтобы определить значение показателя политропы для того или иного конкретного газового процесса, надо располагать экспериментальными данными для этого процесса.

Администратор сайта: Колосов Михаил
email:
Copyright © 2011-2022. All rights reserved.

Уравнение политропного процесса.

Продифференцируем уравнение состояния для 1 кг идеального газа:

Принимая теплоемкость не зависящей от температуры, получим уравнение первого закона термодинамики в дифференциальной форме:

Подставляя в это уравнение выражение для , получаем

Разделяя переменные и произведя интегрирование, получаем

,

где — показатель политропы, может принимать значения от нуля до бесконечности.

Зависимость между температурой и удельным объёмом определяется путём замены давления в уравнении политропного процесса его значением из уравнения состояния идеального газа:

или

Исключая подобным же образом удельный объём, находим зависимость между давлением и температурой:

отсюда или

Деформационная работа, производимая 1 кг газа в политропном процессе, определяется по формуле:

Техническая работа, производимая 1 кг газа в политропном процессе, находится по формуле:

То есть отношение технической и деформационной работ равно показателю политропы:

Изменение внутренней энергии в политропном процессе находится общей формулой:

Теплоёмкость процесса определяется из выражения для показателя политропы:

Количество теплоты в политропном процессе находится по формуле:

1.12. Энтальпия рабочего тела.

В термодинамике важную роль играет сумма внутренней энергии системы и произведения давления системы на её объём , называемая энтальпией или теплосодержанием и обозначаемая I или Н:

Так как входящие в нее величины являются функциями состояния, то и сама энтальпия является функцией состояния.

Так же как внутренняя энергия, работа и теплота, она измеряется в джоулях (Дж).

Энтальпия обладает свойством аддитивности . Величина

называемая удельной энтальпией ( ), представляет собой энтальпию системы, содержащей 1 кг ве­щества, и измеряется в Дж/кг.

Поскольку энтальпия есть функция состояния, то она может быть представ­лена в виде функции двух любых пара­метров состояния:

, а величина di является полным

Изменение энтальпии в любом про­цессе определяется только начальным и конечным состояниями тела и не за­висит от характера процесса.

Физический смысл энтальпии выяс­ним на следующем примере. Рассмотрим расширенную систему, включающую газ в цилиндре и поршень с грузом общим весом G (рис.1.7). Энергия этой системы складывается из внутренней энергии га­за и потенциальной энергии поршня с грузом в поле внешних сил: . В условиях равновесия (G = pF) эту функцию можно выразить через па­раметры газа: . Получаем, что , т.е. энтальпию можно трактовать как энергию расширенной системы.

Уравнение в случае, когда единственным видом работы является работа расширения, с уче­том очевидного соотношения может быть записано в виде .

Рис.1.10. К определению физического смысла энтальпии

Из этого соотношения следует, что если давление термодинамической системы сохраняется неизменным, то есть осуществляется изобарный процесс (dp = 0), то и , то теплота, подведенная к системе при постоянном давлении, идет только на изменение энтальпии данной системы.

Это выражение очень часто используется в расчетах, так как огромное

количество процессов подвода теплоты в теплоэнергетике (в паровых котлах, камерах сгорания газовых турбореактивных двигателей, теплообменных аппаратах), а также целый ряд процессов химической технологии и многих других производствах осуществляется при постоянном давлении. Кстати, по этой причине в таблицах термодинамических свойств обычно приводятся значения энтальпии, a не внутренней энергии.

Для идеального газа для вычисления энтальпии используется формула

Так как между энтальпией и внутренней энергией существует связь, выбор начала отсчета одной из них произволен: в точке, принятой за начало отсчета внутренней энергии, Например, для воды при = 0,01 °С ,

р = 610,8 Па, , a .

При расчетах практический интерес представляет изменение энтальпии в конечном процессе:

1.13. Энтропия рабочего тела.

Как уже указывалось, величина не является полным дифференциалом, так как теплота и изменение внутренней энергии зависят от теплоемкости, которая, в свою очередь, является функцией температуры. Кроме того, чтобы проинтегрировать правую часть этого уравнения, нужно знать зависимость давления от удельного объёма, то есть нужно знать процесс, который совершается.

В математике доказывается, что дифференциальный двучлен всегда можно превратить в полный дифференциал путем умножения (или деления) на интегрирующий множитель (или делитель). Таким интегрирующим делителем для элементарного количества теплоты является абсолютная температура Т.

Покажем это на примере изменения состояния идеального газа в равновесных процессах:

Выражение при равновесном изменении состояния газа есть полный дифференциал некоторой функции состояния, которая называется энтропией, обозначается для 1 кг газа через и измеряется в . Термин «энтропия» был введен впервые Рудольфом Юлиусом Эммануэлем Клаузиусом (1822 – 1888), немецким физиком, в 1865 году.

Для произвольного количества газа энтропия, обозначаемая через ,

равна и измеряется в .

Таким образом, аналитически энтропия определяется следующим образом:

Эта формула справедлива как для идеальных, так и для реальных газов.

Подобно любой другой функции состояния энтропия может быть представлена в виде функции любых двух параметров состояния:

Понятием «энтропия» (от греч. Entropia – поворот, превращение) будем называть в термодинамике направление теплообмена между рабочим телом термодинамической системы и внешней средой.

Значение энтропии для заданного состояния газа определяется интегрированием уравнения для энтропии:

, где — константа интегрирования.

При температурах, близких к абсолютному нулю, все известные газы находятся в конденсированном состоянии. Вальтер Нернст (1864 – 1941), немецкий физик и химик, в 1906 году экспериментально установил, а Макс Планк (1858 – 1947), немецкий физик, в 1912 году окончательно сформулировал следующий принцип:

при температуре, стремящейся к абсолютному нулю, энтропия газа, находящегося в конденсированном состоянии с упорядоченной кристаллической структурой, стремится к нулю,то есть при .

Этот закон называют третьим законом термодинамикиили тепловой теоремой В.Нернста. Он позволяет рассчитать абсолютное значение энтропии в отличие от внутренней энергии и энтальпии, которые всегда отсчитываются от произвольного уровня.

Однако в технической термодинамике обычно используется не абсолютное значение энтропии, а ее изменение в каком-либо процессе:

(1.18)

поэтому энтропию тоже отсчитывают от произвольно выбранного уровня.

Получим формулы, позволяющие вычислить изменение энтропии идеального газа. Для этого проинтегрируем уравнение для энтропии, полагая :

Имея в виду уравнение состояния, записанное для состояний «1» и «2», получаем:

После подстановки отношений и получаем следующие формулы для изменения энтропии идеального газа:

;

Поскольку энтропия есть функция со­стояния рабочего тела, написанными уравнениями можно пользоваться вне зависимости от пути перехода рабочего тела между состояниями «1» и «2» и, в частности, от того, равновесный этот переход или нет.

Понятие энтропии позволяет ввести чрезвычайно удобную для термодинамических расчетов -диаграмму, на которой (как и

на -диаграмме) состояние термодинамической системы изображается точкой, а равновесный термодинамический процесс линией (рис.1.11).

Из уравнения для изменения энтропии следует, что в равновесном процессе: . Очевидно, что в — диаграмме элементарная теплота процесса изображается элементарной площадкой с высотой и основанием ds, а площадь, ограниченная

Рис.1.11. Графическое изображение теплоты в — координатах.

линией процесса, крайними ординатами и осью абсцисс, эквивалентна теплоте процесса.

Формула для элементарного изменения энтропии показывает, что и имеют одинаковые знаки, следовательно, по характеру изменения в равновесном процессе можно судить о том, в каком направлении происходит теплообмен. При подводе теплоты ( ) его энтропия возрастает ( ), а при отводе теплоты ( ) убывает (ds Q, a dT 2 , а отношение скорости к скорости звука называется числом Маха .

Данное отношение названо в честь Эрнста Маха (1838 – 1916), австрийского физика и философа; отношение является критерием( от греч. Kriterion – средство для суждения) – признаком, на основании которого производится оценка, определение или классификация чего — либо; мерило оценки; в данном случае критерий сжимаемости газа. Формула получается при допущении, что звуковая энергия (волна) распространяется в газе или жидкости в соответствии с уравнением адиабатного процесса или .

Дифференциальное уравнение этого процесса представляется так , или . Отношение соответствует величине звуковой энергии (квадрату скорости распространения звука в веществе).

Отсюда выражение для полной энергии потока в сечении записывается так:

Число Маха, таким образом, является характеристикой сжимаемости рабочего тела. Например, при сжимаемостью газа можно пренебречь и принять , то есть считать газ как жидкость. При — околозвуковой поток, характерный для полетов гражданских самолетов; при звуковой барьер или критический режим течения потока; при трансзвуковой поток, характерный режим обтекания некоторых участков крыла самолета даже при околозвуковой скорости полета воздушного судна; при сверхзвуковой поток; при гиперзвуковой поток. Поскольку плотность воздуха в атмосфере Земли с высотой уменьшается практически до нуля, то число Маха в полете при этих условиях стремится к бесконечности (например, поток газа в пустоту).

Принимая , находим критическую скорость звука, используя выражение:

Если формулу для полной энергии потока разделить на и обозначить отношение скорости к критической скорости звука как приведенную скорость , то выражение для полной энергии потока в сечении (или для любой точки потока) представляется так

или — газодинамическая функция температуры. Значение приведенной скорости меняется от нуля до максимального значения .

Если принять процесс торможения потока от температуры до адиабатным, что практически соответствует приборам для измерения давления в потоке, то можно найти выражение для газодинамической функции давления

или плотности .

Уравнение сохранения энергии широко используется в авиационной практике для различных элементов двигателей. Например:

а) работа , подводимая к валу ротора компрессора ;

Политропный процесс | 20+ важных часто задаваемых вопросов и числовых значений

Content

Политропный процесс

Определение политропный процесс

Политропное уравнение | Политропное уравнение состояния

Политропный процесс можно определить уравнением

показатель степени n называется индексом политропы. Он зависит от материала и варьируется от 1.0 до 1.4. Это метод постоянной удельной теплоемкости, при котором учитывается поглощение тепла газом из-за повышения температуры на единицу.

Политропный индекс

  • п nd закон термодинамики. Эти частные случаи используются в тепловом взаимодействии для астрофизики и химической энергии.
  • п = 0: Р = С: Представляет собой изобарический процесс или процесс постоянного давления.
  • n = 1: PV = C: Согласно предположению об идеальном газовом законе, PV = C представляет постоянную температуру или изотермический процесс.
  • 1 0). Как и в циклах сжатия пара, тепло теряется в горячее окружение.
  • п = γ: В предположении закона идеального газа, представляет собой постоянную энтропию, изэнтропический процесс или обратимый адиабатический процесс.
  • γ st закон термодинамики,

Политропный против изэнтропического процесса

Политропный процесс — это термодинамический процесс, который подчиняется уравнению

Этот процесс учитывает потери на трение и фактор необратимости процесса. Это реальный процесс, за которым следует газ в определенных условиях.

Изэнтропический процесс, также известный как обратимый адиабатический процесс, представляет собой идеальный процесс, в котором не происходит передача энергии или тепла через границы системы. В этом процессе предполагается, что система имеет изолированную границу. Т.к. теплопередача равна нулю. дQ = 0

Согласно первому закону термодинамики,

Политропный процесс против адиабатического процесса

Политропный процесс — это термодинамический процесс, который подчиняется уравнению

Этот процесс учитывает потери на трение и фактор необратимости процесса. Это реальный процесс, за которым следует газ в определенных условиях.

Адиабатический процесс — это особое и специфическое состояние политропного процесса, при котором.

Подобно изэнтропическому процессу, в этом процессе также не происходит передачи энергии или тепла через границы системы. В этом процессе предполагается, что система имеет изолированную границу.

Политропная эффективность

«Политропический КПД, точно определяемый как отношение идеальной работы сжатия для изменения перепада давления в многоступенчатом компрессоре к фактической работе сжатия при изменении перепада давления в многоступенчатом компрессоре».

Проще говоря, это изоэнтропическая эффективность процесса для бесконечно малой ступени многоступенчатого компрессора.

Где, γ = индекс адиабаты

Pd = Давление нагнетания

Ps = Давление всасывания

Td = Температура подачи

Ts = Температура всасывания

Политропная голова

Политропный напор можно определить как напор, создаваемый центробежным компрессором при политропном сжатии газа или воздуха. Величина развиваемого давления зависит от плотности сжатого газа, и это зависит от изменения плотности газа.

γ = индекс адиабаты

zсредний = Средний коэффициент сжимаемости

η = политропная эффективность

Pd = Давление нагнетания

Ps = Давление всасывания

S = удельный вес газа

Ts = Температура всасывания

Политропный процесс для воздуха | Политропный процесс для идеального газа

Считается, что воздух является идеальным газом, и поэтому законы идеального газа применимы к воздуху.

………………………. Соотношение между давлением [P] и объемом [V]

………………………. Связь между объемом [В] и температурой [Т]

………………………. Связь между давлением [P] и температурой [T]

Примеры политропных процессов

1. Рассмотрим политропный процесс с индексом политропы. п = (1.1). Начальные условия: P1 = 0, В1 = 0 и заканчивается на P2= 600 кПа, В2 = 0.01 м 3 . Оцените проделанную работу и теплоотдачу.

Ответ: Работы, выполненные политропным процессом, предоставлены

Теплопередача определяется выражением

2. Поршневой цилиндр содержит кислород при 200 кПа объемом 0.1 м. 3 и при 200 ° С. Масса добавляется так, чтобы газ сжимался с PV. 1.2 = постоянная до конечной температуры 400 ° C. Подсчитайте проделанную работу.

Ответ: Выполненная политропная работа определяется

3. Рассмотрим аргон при 600 кПа, 30 ° C, сжатый до 90 ° C в политропном процессе с n = 1.33. Найдите проделанную работу на Газе.

Ответ: Выполненная политропная работа определяется

для аргона при 30 ° C составляет 208.1 Дж / кг. K

Принимая m = 1 кг

4. Предположим, что масса 10 кг ксенона хранится в баллоне при 500 К, 2 МПа, расширение представляет собой политропный процесс (n = 1.28) с конечным давлением 100 кПа. Посчитайте проделанную работу. Учтите, что система имеет постоянную удельную теплоемкость.

Ответ: Выполненная политропная работа определяется

для ксенона при 30 ° C — 63.33 Дж / кг. K

Принимая m = 10 кг

5. Рассмотрим цилиндр-поршень с начальным объемом 0.3, содержащий 5 кг газообразного метана при давлении 200 кПа. Газ сжимают политропно (n = 1.32) до давления 1 МПа и объема 0.005. Рассчитайте теплопередачу во время процесса.

Ответ: Политропная теплопередача определяется

6. Примите во внимание цилиндр-поршень, содержащий 1 кг метана при 500 кПа, 20 ° C. Газ политропно сжимают до давления 800 кПа. Рассчитайте теплопередачу с показателем n = 1.15.

Ответ: Политропная теплопередача определяется

Мы знаем, что R для метана = 518.2 Дж / кг. K

7. 1 кг гелия хранится в системе поршень-цилиндр при 303 К, 200 кПа сжимается до 400 К в обратимом политропном процессе с показателем степени n = 1.24. Гелий является идеальным газом, поэтому удельная теплоемкость будет фиксированной. Найдите работу и теплопередачу.

Ответ: Выполненная политропная работа определяется

R для гелия составляет 2077.1 Дж / кг.

Политропная теплопередача определяется выражением

8. Предположите, что воздух хранится в баллоне объемом 0.3 литра при 3 МПа, 2000 К. Воздух расширяется в соответствии с обратимым политропным процессом с показателем степени n = 1.7, объемное соотношение в этом случае составляет 8: 1. Рассчитайте политропную работу для процесса и сравните ее с адиабатической работой, если процесс расширения следует за обратимым адиабатическим расширением.

Ответ: Нам дается

Соотношение между давлением [P] и объемом [V]

Выполненная политропная работа определяется выражением

Проделанная адиабатическая работа определяется выражением

Для процесса расширения Работа, выполняемая посредством обратимого адиабатического процесса, больше, чем Работа, выполняемая посредством обратимого политропного процесса.

9. В закрытом контейнере содержится 200 л газа при 35 ° C, 120 кПа. Газ сжимается в политропном процессе до температуры 200 ° C, 800 кПа. Найти политропную работу, совершаемую воздухом для n = 1.29.

Ответ: соотношение между давлением [P] и объемом [V]

Выполненная политропная работа определяется выражением

10. Масса 12 кг газообразного метана при 150 ° C, 700 кПа подвергается политропному расширению с n = 1.1 до конечной температуры 30 ° C. Найти теплопередачу?

Ответ: Мы знаем, что R для метана = 518.2 Дж / кг. K

Политропная теплопередача определяется выражением

11. Узел цилиндр-поршень содержит R-134a при 10 ° C; объем 5 литров. Охлаждающая жидкость сжимается до 100 ° C, 3 МПа в соответствии с обратимым политропным процессом. рассчитать проделанную работу и теплоотдачу?

Ответ: Мы знаем, что R для R-134a = 81.49 Дж / кг. K

Выполненная политропная работа определяется выражением

Политропная теплопередача определяется выражением

12. Является ли политропный процесс изотермическим по своей природе?

Ответ: Когда n становится 1 для политропного процесса: согласно предположению об идеальном газовом законе, PV = C представляет постоянную температуру или изотермический процесс.

13. Обратим ли политропный процесс?

Ответ: политропные процессы внутренне обратимы. Вот несколько примеров:

п = 0: Р = С: Представляет собой изобарический процесс или процесс постоянного давления.

n = 1: PV = C: Согласно предположению об идеальном газовом законе, PV γ = C представляет собой постоянную температуру или изотермический процесс.

п = γ: В предположении закона идеального газа, представляет собой постоянную энтропию, изэнтропический процесс или обратимый адиабатический процесс.

n = Бесконечность: Представляет собой изохорный процесс или процесс постоянного объема.

14. Адиабатический политропный процесс?

Ответ: когда п = γ: В предположении закона идеального газа PV γ = C, представляет постоянную энтропию или изэнтропический процесс или обратимый адиабатический процесс.

14. Что такое политропная эффективность?

Ответ: Политропический КПД можно определить как отношение идеальной работы сжатия к фактической работе сжатия при изменении перепада давления в многоступенчатом компрессоре. Проще говоря, это изоэнтропическая эффективность процесса для бесконечно малой ступени многоступенчатого компрессора.

Проще говоря, это изоэнтропическая эффективность процесса для бесконечно малой ступени многоступенчатого компрессора.

Где, γ = индекс адиабаты

Pd = Давление нагнетания

Ps = Давление всасывания

Td = Температура подачи

Ts = Температура всасывания

15. Что такое гамма в политропном процессе?

Ответ: В политропном процессе, когда п = γ: В предположении закона идеального газа PV γ = C, представляет постоянную энтропию или изэнтропический процесс или обратимый адиабатический процесс.

16. что такое политропный процесс?

Ответ: Политропный процесс можно определить уравнением

показатель степени n называется индексом политропы. Он зависит от материала и варьируется от 1.0 до 1.4. Его также называют процессом с постоянной удельной теплотой, при котором тепло, поглощаемое газом, учитываемое из-за повышения температуры на единицу, является постоянным.

17. Какие выводы можно сделать для политропного процесса с n = 1?

Ответ: когда п = 1: PV n = C : Согласно предположению об идеальном газе, закон становится PV = C представляет собой постоянную температуру или изотермический процесс.

18. Что такое неполитропный процесс?

Ответ: Политропный процесс можно определить уравнением PV n = C показатель степени n называется индексом политропы. Когда,

  1. п 0). Как и в циклах сжатия пара, тепло теряется в горячее окружение.
  2. п = γ: В предположении закона идеального газа PV γ = C представляет постоянную энтропию или изэнтропический процесс или обратимый адиабатический процесс.
  3. γn0). Как и в циклах сжатия пара, тепло теряется в горячее окружение. Изменение температуры происходит из-за изменения внутренней энергии, а не подводимого тепла. Произведенная работа превышает количество поданного или добавленного тепла. Таким образом, даже если при политропном расширении добавляется тепло, температура газа снижается.

21. В политропном процессе, когда PV n = константа, температура тоже постоянна?

Ответ: В политропном процессе, когда PV n = постоянная, температура остается постоянной только при показателе политропы n = 1. Для n = 1: PV = C: Согласно предположению об идеальном газовом законе, PV = C представляет постоянную температуру или изотермический процесс.


источники:

http://helpiks.org/4-42155.html

http://ru.lambdageeks.com/polytropic-process/