Уравнение состояния в нормальной форме

Уравнения состояния

При решении некоторых задач теории автоматического управления удобнее представлять дифференциальное уравнение объекта (5.1) или дифференциальные уравнения системы (5.4) и (5.6) в виде совокупности дифференциальных уравнений первого порядка. Не умаляя общности, рассмотрим эти уравнения применительно к управляемому объекту.

Пусть объект описывается дифференциальным уравнением n-го порядка (5.1)

называемых переменными состояния и представим уравнение (5.70) в виде системы дифференциальных уравнений

устанавливается алгебраическим уравнением

Обычно уравнения (5.71) и (5.72) записываются в векторпо-матричной форме:

— матрицы-столбцы. Матрицу-столбец-

могут иметь неодинаковые размерности.

В выборе переменных состояния имеется определенная свобода. Важно только, чтобы они были независимыми. От того, как выбраны переменные, зависит форма уравнений (5.73) и (5.74), т. е. вид входящих в них матриц.

При нормальной форме уравнений состояния в качестве переменных состояния выбираются сама управляемая величина \п- 1 ее производные:

т. с. когда оно имеет вид

Достоинством нормальной формы является то, что переменные состояния имеют ясный физический смысл, а некоторые из них (например, хих2 и х:]) могут быть непосредственно измерены датчиками различных типов.

Для получения уравнений состояния в канонической форме уравнение объекта (5.70) представляется в виде

Если корни рь Ръ-Рп полинома С0(р) действительные однократные, то правая часть (5.80) может быть представлена в виде суммы элементарных дробей:

где К; и ()г- — коэффициенты разложения.

В качестве неременных состояния выбираются слагаемые суммы (5.81):

Большим достоинством канонической формы является диагоиальиость матрицы Л , что существенно упрощает решение уравнения (5.73). Основной недостаток ее состоит в том, что переменные состояния не имеют ясного физического смысла, в результате чего возникает проблема их непосредственного измерения.

Существуют и другие способы выбора переменных состояния, которые здесь не рассматриваются.

Решение векторно-матричиого уравнения (5.73) может быть представлено в виде

Здесь оно без строгого доказательства построено по аналогии с решением линейного дифференциального уравнения 1-го порядка

общий интеграл которого, как известно, определяется но формуле

называется переходной или фундаментальной матрицей. Если уравнения состояния представлены в канонической форме, то матрица А диагональная и имеет вид (5.85). Тогда

При других формах уравнений состояния для определения фундаментальной матрицы можно использовать известные способы нахождения матричных функций, например, теоремы Кели—Гамильтона или Сильвестра. Можно также использовать формулу

При необходимости можно осуществить обратный переход от уравнений состояния к передаточным функциям объекта. Для этого уравнение (5.73) запишем в изображениях по Лапласу:

получается формула (5.88). Из уравнения

(5.74) с учетом (5.89) найдем изображение управляемой величины при нулевых начальных значениях:

При описании свойств объекта уравнениями состояния возникают две проблемы, нетипичные для случая, когда используется одно дифференциальное уравнение я-то порядка. Эти проблемы рассматриваются в следующем параграфе.

Методы переменных состояния в теории автоматического управления. Современная теория автоматического управления

Страницы работы

Фрагмент текста работы

Характеристическое уравнение располагается в последней строке.

Структурная схема для управляемой канонической формы уравнений состояния

Здесь переменные состояния – фазовые координаты.

Другая форма: в правой части уравнения содержатся производные от входного воздействия

Введем переменные состояния:

Здесь координаты состояния xi – абстрактные переменные.

Этим уравнениям соответствует структура:

Возможно другое представление:

Структурная схема может быть преобразована к виду:

Тогда матрицы A, B, C в уравнениях состояния будут:

Это — наблюдаемая каноническая форма уравнений состояния.

Таким образом, переход от передаточной функции к описанию в переменных состояния является неоднозначным.

Другие канонические формы уравнений состояния.

В двух последних формах матрица А – диагональная.

  • Преимущества структурной модели :
  • наглядное представление понятия «состояние систем»,
  • однозначно представляется структура взаимодействий
  • между переменными в виде системы с обратными связями,
  • структурные модели полезны при моделировании САУ
  • на аналоговых или цифровых вычислительных машинах.

Пример получения уравнений состояния

П р и м е р. Система описывается дифференциальным уравнением Составим уравнения состояния и структурную схему

Свойства объектов и систем управления. Управляемость .

Определение. Система полностью управляема, если она может быть переведена из любого начального состояния x(0) в начало координат (0, 0,…,0) под действием управления u(t) за конечное время. Теорема Калмана об управляемости. Состояние непрерывной системы управляемо, если и только если ранг матрицы NУ = [B | AB | A2B | . | An-1B] равен размерности пространства состояний n.

Пример 1. Проверим, управляема ли система:

Пример 2. Также проверим управляемость системы:

Т.к. rangNy = 1 , система управляема неполностью. Порядок управляемой части равен 1.

В такой системе есть “висячая” часть на входе.

В случае представления объекта управления моделью типа “вход — выход” условием его управляемости является отсутствие общих корней полиномов А(p) и B(p): Т.е. система управляема, если алгебраические уравнения A(p)=a0pn+a1pn-1+…+an = 0, B(p)=b0pm+b1pm-1+…+bm = 0 не имеют общих корней.

Пример 2. Определим управляемость системы, имеющей передаточную функцию

Прямой расчет корней числителя и знаменателя дает результаты, приведенные в табл.

Таким образом, числитель и знаменатель передаточной функции W(p) имеют два общих корня (-1 -j1.414) и ( -1+j 1.414). Значит, система не управляема. Изменение значений корней для этих пар в числителе или знаменателе переведет систему в ранг управляемых.

  • Для осуществления управления необходимо иметь информацию о текущем состоянии системы, т.е. о значениях вектора состояния x(t) в каждый момент времени.
  • Однако некоторые из переменных состояния являются абстрактными, не имеют физических аналогов в реальной системе или же не могут быть измерены. Измеряемыми и наблюдаемыми являются физические выходные переменные y(t).
  • Таким образом, возникает вопрос: можно ли определить вектор состояния по измеряемому вектору выхода и вектору входа?
  • Определение. Система называется полностью наблюдаемой, если по результатам измерения входных u(t) и выходных y(t) переменных можно однозначно определить все составляющие вектора x(t) на конечном интервале времени.
  • Теорема Калмана о наблюдаемости. Система наблюдаема, если и только если ранг матрицы
  • Nн = [CT | ATCT | (AT)2CT | . | (AT)n-1CT].
  • равен размерности пространства состояний.

Изменение базиса в уравнениях состояния

О синтезе системы

  • Синтез системы — это направленный расчет, цель
  • которого :
  • построение рациональной структуры системы;
  • нахождение оптимальных значений параметров отдельных звеньев.
  • Качество управления можно описать двумя способами.
  • Первый способ предусматривает или непосредственное задание динамических характеристик выходных координат системы при типовых воздействиях, или задание совокупности прямых и косвенных показателей качества (значение перерегулирования, времени регулирования, статической ошибки, частоты среза, полосы пропускания и т.д.).
  • Второй способ основан на введении некоторого обобщенного функционала, определяемого всеми переменными системы управления u(t), x(t), y(t).
  • В теории линейных систем управления широко используются оба указанных способа.
  • Если передаточная функция системы не имеет нулей, то при выборе ее желаемого полинома D(p) можно руководствоваться стандартными формами (фильтрамиЧебышева, Баттерворта и др.)
  • Стандартные формы определяют коэффициенты характеристического полинома , обеспечивающие в системе переходные и частотные характеристики с известными показателями качества.
  • Если же система характеризуется наличием нулей, стандартные формы могут служить в качестве исходного материала для поиска своего оптимального расположения корней.
  • Одним из основных методов проектирования детерминированных систем управления в пространстве состояний является метод расположения полюсов.

Распределение полюсов системы управления

  • Рассмотрим систему с одним входом и одним выходом.
  • Требуемое качество процессов может быть достигнуто заданием распределения полюсов замкнутой системы на комплексной плоскости.
  • Для системы
  • полюса системы — это собственные значения матрицы А или корни ее характеристического уравнения
  • Если уравнения объекта заданы в нормальной форме (Фробениуса), то матрица обратных связей по состоянию
  • Покажем это:

Нормальная форма матрицы А:

Пусть желаемые полюсы : λ1= -3, λ2= -2 Желаемый характеристический полином: φ=(λ+3)(λ+1)= λ 2+4 λ +3; α1=4, α2=3. Тогда k1 = a2 — α2 = 2 — 3 = -1, k2 = a1- α1 = -3 — 4 = -7. K = |-1 -7| Следовательно: v = u — x1 -7×2 Вычислив матрицу перехода P от исходной к нормальной форме можно получить матрицу обратной связи для исходного представления

Нормальная форма уравнений в пространстве состояний

Нормальная форма уравнений в пространстве состояний получается из стандартной формы (10.1) посредством преобразования подобия. При этом предполагается, что собственные числа матрицы А различные.

Введем линейное преобразование

где М — модальная матрица матрицы А.

Уравнения (10.1) перепишем

. (10.33)

Умножив первое уравнение из (10.33) слева на М -1 , получим

. (10.34)

Так как M — модальная матрица, то

М -1 АМ = L = — диагональная матрица;

где li (при i = 1, 2, . , n) — собственные числа матрицы А.

Следовательно, можно записать

, (10.35)

Q=[q1,q2. qn] T — вектор состояния системы, элементами которого являются новые переменные состояния qi (при i=1, 2, . , n).

Система (10.35) представляет собой нормальную форму уравнений описания систем управления в пространстве состояний.

Нормальная форма уравнений состояния позволяет декомпозировать многосвязную систему n-го порядка на n взаимонесвязанных систем, при этом дифференциальные уравнения становятся развязанными относительно переменных состояния q1,q2. qn, т.е. они имеют вид

, (10.36)

где fi — внешнее воздействие на i-ю переменную состояния.

Таким образом, переход к нормальной форме существенно упрощает исследование многосвязных систем.

В случае кратных собственных чисел матрицы A диагональная матрица L заменяется матрицей J, которая строится из клеток Жордана, например,

. (10.37)

Таким образом, из сравнения уравнений (10.1) и (10.35) следует, что при математическом описании одного и того же динамического процесса различному выбору переменных состояния соответствуют различные матрицы системы, управления, наблюдения, связи и различные векторные дифференциальные уравнения, каждое из которых полностью определяет выходную величину системы.

Пример. Написать уравнения состояний в нормальной форме для динамической системы, представленной на рис.10.3.

Рис. 10.3. Структурная схема системы в переменных состояния

Решение. Выберем в качестве переменных состояния системы сигналы на выходах интеграторов x1 и x2. В этом случае структурной схеме (рис.10.3) соответствует следующая система уравнений (стан-дартная форма)

, , , D=[2].

Собственные числа матрицы A: l1= -1, l2= -2.

Модальная матрица M= и M -1 = .

Тогда диагональная матрица системы, матрица управления, матрица наблюдения и матрица связи будут

L= , Вn= М -1 B= , Cn=CM=[-1 -1], Dn=D=[2].

Отсюда получаем уравнения состояний системы в нормальной форме

,

которым соответствует структурная схема системы, приведенная на рис.10.4.

Рис. 10.4. Структурная схема системы в переменных состояния


источники:

http://vunivere.ru/work86624

http://mydocx.ru/12-109692.html