Уравнение состояния водяного пара имеет вид

Уравнение состояния влажного воздуха

Влажный воздух представляет собой механическую смесь сухого воздуха и водяного пара. Поскольку критическая температура водя­ного пара (Ткр =374 °С) выше наблюдаемых в атмосфере темпера­тур, то он в реальных условиях атмосферы может переходить в жид­кое и твердое состояния (конденсироваться).

Теория фазовых переходов водяного пара детально рассматрива­ется в разделе IV. Здесь отметим только, что условие Т

Примем следующие обозначения: р — общее давление; Т — тем­пература, одинаковая для водяного пара, сухого и влажного возду­ха; е — парциальное давление водяного пара; (р — е) — парциальное давление сухого воздуха. Уравнением состояния водяного пара слу­жит уравнение (1.4.1). Уравнение состояния сухой части воздуха имеет вид

Подставим в уравнения (1.4.1) и (1.4.3) значения удельных объе­мов в соответствии с (1.4.2) и удельной газовой постоянной водяного пара в соответствии с (1.4.4):

Сложив уравнения (1.4.5) и (1.4.6), получим уравнение состоя­ния влажного воздуха:

которому можно придать два различных вида в зависимости от того, отнесен ли множитель (1 + 0,608s) к удельной газовой постоянной Rc или к температуре Т.

Если ввести удельную газовую постоянную влажного воздуха

то уравнение (1.4.7) примет вид

Удельная газовая постоянная R в этом уравнении — величина переменная, зависящая от влажности воздуха s.

В метеорологии множитель (1 + 0,608s) обычно относят к темпе­ратуре, вводя понятие виртуальной температуры

Нередко виртуальную температуру представляют в виде суммы:

где ∆Tv — виртуальный добавок. Из сравнения последнего выраже­ния с (1.4.9) следует:

Если водяной пар находится в состоянии насыщения, то ∆Tv при данных Т и р достигает наибольшего значения

которое при фиксированном р является функцией одной лишь тем­пературы. При р = 1000 гПа максимальный виртуальный добавок ∆Tvт имеет следующие значения:

Из этих данных вытекает, что виртуальный добавок, а соответствен­но и роль влажности в изменении плотности воздуха малы при низ­ких температурах и достаточно велики при высоких.

С введением виртуальной температуры уравнение состояния влажного воздуха принимает вид

Если в (1.4.11) ввести плотность влажного воздуха p = l/v, то уравнение состояния влажного воздуха примет вид

Из сравнения уравнения (1.4.12) с уравнением (1.3.8) следует, что при одинаковых температуре и давлении плотность влажного воздуха всегда меньше плотности сухого воздуха. Физически это объясняется тем, что в состав влажного воздуха входит более лег­кий по сравнению с сухим воздухом водяной пар, который вытес­няет часть сухого воздуха.

Уравнения состояния атмосферного воздуха

Уравнение состояния газов применимо для теоретических расчётов и к сухому воздуху, и к водяному пару, и к влажному воздуху. Однако для влажного воздуха плотность зависит ещё и от упругости водяного пара, содержащегося в воздухе.

Уравнение состояния сухого воздуха имеет следующий вид:

где p — давление воздуха; ν — удельный объём сухого воздуха; T — абсолютная температура воздуха; Rc — удельная газовая постоянная воздуха, равная 287,05287 Дж/(кг К).

При замене удельного объёма v плотностью ρ = 1/v, уравнение состояния сухого воздуха примет вид:

Уравнение состояния влажного воздуха имеет следующий вид:

где s — массовая доля водяного пара; множитель (1 + 0,608s) можно отнести как к удельной газовой постоянной влажного воздуха, так и к температуре этого воздуха.

Уравнение состояния водяного пара с достаточной степенью точности можно записать в следующем виде:

где e — парциальное давление водяного пара; νn — удельный объём; Rn — удельная газовая постоянная водяного пара (Rn = R / Mn = 461,51 Дж / кг · К · R* = 8314,32 Дж/(кмоль∙K) — универсальная газовая постоянная).

Водяной пар отличается по своим свойствам от идеального газа (Rn не постоянна), но в пределах от 0 ºC до 40 ºC удельная газовая постоянная водяного пара близка к теоретическому значению. По этой причине уравнение состояния водяного пара может служить уравнением состояния как ненасыщенного, так и насыщенного водяного пара.

В метеорологии множитель (1 + 0,608s) обычно относят к температуре, для чего вводится понятие виртуальной температуры (Tv = T (1 + 0,608s) = T + ΔTv; ΔTv — виртуальный добавок).

С введением виртуальной температуры уравнение состояния влажного воздуха имеет вид:

где ρ = 1/ν — плотность влажного воздуха.

Из сравнения уравнений состояния сухого воздуха и влажного воздуха следует, что при одинаковой температуре и давлении плотность влажного воздуха всегда меньше плотности сухого воздуха. Физически это объясняется тем, что в состав влажного воздуха входит водяной пар, который вытесняет часть сухого воздуха.

Литература

Гидрометеорологическое Обеспечение Мореплавания — Глухов В.Г., Гордиенко А.И., Шаронов А.Ю., Шматков В.А. [2014]

Водяной пар

Общие положения. Определение параметров состояния водяного пара. Pv — Тs — и hs – диаграммы состояния водяного пара. Процесс парообразования в паровых диаграммах.

Процесс парообразования. Основные понятия и определения. Рассмотрим про­цесс получения пара. Для этого 1 кг во­ды при температуре 0 °С поместим в ци­линдр с подвижным поршнем. Приложим к поршню извне некоторую постоянную силу Р. Тогда при площади поршня F давление будет постоянным и равным p=P/F. Изобразим процесс парообразо­вания, т. е. превращения вещества из жидкого состояния в газообразное, в р,v-диаграмме

Начальное состояние воды, находя­щейся под давлением р и имеющей тем­пературу 0°С, изобразится на диаграм­ме точкой a0. При подводе теплоты к воде ее температура постепенно повышается до тех пор, пока не достигнет температу­ры кипения ts, соответствующей данному давлению. При этом удельный объем жидкости сначала уменьшается, дости­гает минимального значения при t=4°С, а затем начинает возрастать. (Такой аномалией — увеличением плот­ности при нагревании в некотором диа­пазоне температур — обладают немногие жидкости. У большинства жидкостей удельный объем при нагревании увели­чивается монотонно). Состояние жидко­сти, доведенной до температуры кипения, изображается на диаграмме точкой а’.

При дальнейшем подводе теплоты начинается кипение воды с сильным увеличением объема. В цилиндре теперь на­ходится двухфазная среда — смесь воды и пара, называемая влажным насы­щенным паром. По мере подвода теплоты количество жидкой фазы умень­шается, а паровой — растет. Температу­ра смеси при этом остается неизменной и равной ts, так как вся теплота расходу­ется на испарение жидкой фазы. Следовательно — процесс парообразования на этой стадии является изобарно-изотермическим. Наконец, последняя капля во­ды превращается в пар, и цилиндр ока­зывается заполненным только паром, ко­торый называется сухим насыщенным. Состояние его изображается точ­кой а».

Рисунок 1 — р-v-диаграмма водяного пара

Насыщенным называется пар, находящийся в термическом и динамиче­ским равновесии с жидкостью, из кото­рой он образуется. Динамическое равно­весие заключается в том, что количество молекул, вылетающих из воды в паровое пространство, равно количеству молекул, конденсирующихся на ее поверхности. В паровом пространстве при этом равно­весном состоянии находится максималь­но возможное при данной температуре число молекул. При увеличении темпера­туры количество молекул, обладающих энергией, достаточной для вылета в па­ровое пространство, увеличивается. Рав­новесие восстанавливается за счет воз­растания давления пара, которое ведет к увеличению его плотности и, следова­тельно, количества молекул, в единицу времени конденсирующихся на поверхности воды. Отсюда следует, что давление насыщенного пара является монотонно возрастающей функцией его температу­ры, или, что то же самое, температура насыщенного пара есть монотонно воз­растающая функция его давления.

При увеличении объема над повер­хностью жидкости, имеющей температу­ру насыщения, некоторое количество жидкости переходит в пар, при уменьше­нии объема «излишний» пар снова пере­ходит в жидкость, но в обоих случаях давление пара остается постоянным.

Насыщенный пар, в котором отсут­ствуют взвешенные частицы жидкой фа­зы, называется сухим насыщенным паром. Его удельный объем и темпера­тура являются функциями давления. По­этому состояние сухого пара можно за­дать любым из параметров — давлением, удельным объемом или температурой.

Двухфазная смесь, представляющая собой пар со взвешенными в нем капель­ками жидкости, называется влажным насыщенным паром. Массовая до­ля сухого насыщенного пара во влажном называется степенью сухости па­ра и обозначается буквой х. Массовая доля кипящей воды во влажном паре, равная 1-х, называется степенью влажности. Для кипящей жидкости х=0, а для сухого насыщенного пара х=1. Состояние влажного пара характе­ризуется двумя параметрами: давлением (или температурой насыщения ts, опре­деляющей это давление) и степенью су­хости пара.

При сообщении сухому пару теплоты при том же давлении его температура будет увеличиваться, пар будет перегре­ваться. Точка а изображает состояние перегретого пара ив зависимости от температуры пара может лежать на разных расстояниях от точки а». Таким образом, перегретым называется пар, температура которого превышает температуру насыщенного пара того же давления.

Так как удельный объем перегретого пара при том же давлении больше, чем насыщенного, то в единице объема пере­гретого пара содержится меньшее коли­чество молекул, значит, он обладает меньшей плотностью. Состояние перегретого пара, как и любого газа, определя­ется двумя любыми независимыми пара­метрами.

Если рассмотреть процесс парообра­зования при более высоком давлении, то можно заметить следующие изменения. Точка a0, соответствующая состоянию 1 кг воды при 0 °С и новом давлении, остается почти на той же вертикали, так как вода практически несжимаема. Точ­ка а’ смещается вправо, ибо с ростом давления увеличивается температура ки­пения, а жидкость при повышении темпе­ратуры расширяется. Что же касается пара (точка а»), то, несмотря на увели­чение температуры кипения, удельный объем пара все-таки падает из-за более сильного влияния растущего давления.

Поскольку удельный объем жидкости растет, а пара падает, то при постоянном увеличении давления мы достигнем та­кой точки, в которой удельные объемы жидкости и пара сравняются. Эта точка называется критической. В критиче­ской точке различия между жидкостью и паром исчезают. Для воды параметры критической точки К составляют: ркр=221,29·105 Па; tкр = 374,15 °С; vкр = 0,00326 м3/кг.

Критическая температура — это мак­симально возможная температура сосу­ществования двух фаз: жидкости и на­сыщенного пара. При температурах, больших критической, возможно су­ществование только одной фазы. Назва­ние этой фазы (жидкость или перегретый пар) в какой-то степени условно и определяется обычно ее температурой. Все газы являются сильно перегретыми сверх Tкр парами. Чем выше температура перегрева (при данном давлении), тем ближе пар по своим свойствам к идеаль­ному газу.

Наименьшим давлением, при котором еще возможно равновесие воды и насы­щенного пара, является давление, соот­ветствующее тройной точке. Под последней понимается то единственное состояние, в котором могут одновремен­но находиться в равновесии пар, вода и лед (точка А’ на рисунке). Параметры тройной точки для воды: р0 = 611 Па; t0 = 0,01 °С; v0=0,00100 м3/кг. Процесс парообразования, происходящий при абсолютном давлении р0=611 Па, показан на диаграмме изобарой А’А», которая практически совпадает с осью абсцисс. При более низких давлениях пар может сосуществовать лишь в равновесии со льдом. Процесс образования пара непо­средственно из льда называется субли­мацией.

Если теперь соединить одноименные точки плавными кривыми, то получим нулевую изотерму I, каждая точка которой соответствует состоянию 1 кг во­ды при 0°С и давлении р, нижнюю пограничную кривую II, пред­ставляющую зависимость от давления удельного объема жидкости при темпе­ратуре кипения, и верхнюю погра­ничную кривую III, дающую зави­симость удельного объема сухого насы­щенного пара от давления.

Все точки горизонталей между кри­выми II и III соответствуют состояниям влажного насыщенного пара, точки кри­вой II определяют состояние кипящей воды, точки кривой III — состояния сухого насыщенного пара. Влево от кривой II до нулевой изотермы лежит область некипящей однофазной жидкости, впра­во от кривой III — область перегретого пара. Таким образом, кривые II и III определяют область насыщенного пара, отделяя ее от области воды и перегретого пара, и поэтому называются пограничными. Выше точки К, где погра­ничных кривых нет, находится область однофазных состояний, в которой нельзя провести четкой границы между жидкостью и паром.

Определение параметров воды и па­ра. Термодинамические параметры кипя­щей воды и сухого насыщенного пара берутся из таблиц теплофизических свойств воды и водяного пара. В этих таблицах термодинамические величины со штрихом относятся к воде, нагретой до температуры кипения, а величины с двумя штрихами — к сухому насыщен­ному пару.

Поскольку для изобарного процесса подведенная к жидкости теплота , то, при­менив это соотношение к процессу а’а», получим

.

Величина r называется теплотой парообразования и определяет количество теплоты, необходимое для превращения одного килограмма воды в сухой насыщенный пар той же темпе­ратуры.

Приращение энтропии в процессе па­рообразования определяется формулой

.

За нулевое состояние, от которого отсчитываются величины s‘, принято состояние воды в тройной точке. Так как состояние кипящей воды и сухого насы­щенного пара определяется только од­ним параметром, то по известному давле­нию или температуре из таблиц воды и водяного пара берутся значения v‘, v» , h‘, h» ,s, s«, r.

Удельный объем vx, энтропия sx и эн­тальпия hx влажного насыщенного пара определяются по правилу аддитивности. Поскольку в 1 кг влажного пара содер­жится x кг сухого и кг кипящей воды, то

.

;

;

Непосредственно из таблиц взять па­раметры влажного пара нельзя. Их опре­деляют по приведенным выше формулам по заданному давлению (или температу­ре) и степени сухости.

Однофазные состояния некипящей воды и перегретого пара задаются двумя параметрами. По заданным давлению и температуре из таблиц воды и перегре­того пара находят значения v, h, s.

Т — s-диаграмма водяного пара. Для исследования различных процессов с во­дяным паром кроме таблиц используется Т — s-диаграмма. Она строится путем переноса числовых данных таблиц водяного пара в Т — s-координаты.

Рисунок 2 — T — s-диаграмма водяного пара

Состояние воды в тройной точке (s0 = 0; T0 = 273,16 К) изображается в диаграмме точкой А’. Откладывая на диаграмме для разных температур значения s‘ и s«, получим нижнюю и верх­нюю пограничные кривые. Влево от ни­жней пограничной кривой располагается область жидкости, между пограничными кривыми — двухфазная область влажно­го насыщенного пара, вправо и вверх от верхней пограничной кривой — область перегретого пара.

На диаграмму наносят изобары, изохоры и линии постоянной степени су­хости, для чего каждую изобару а’а» делят на одинаковое число частей и сое­диняют соответствующие точки линиями x = const. Область диаграммы, лежащая ниже нулевой изотермы, отвечает раз­личным состояниям смеси пар+лед.

h s-диаграмма водяного пара. Если за независимые параметры, определяю­щие состояние рабочего тела, принять энтропию s и энтальпию h, то каждое состояние можно изобразить точкой на h-s-диаграмме.

На рисунке 6.3 изображена h, s-диаграм­ма для водяного пара, которая строится путем переноса числовых данных таблиц водяного пара в hs-координаты.

За начало координат принято состоя­ние воды в тройной точке. Откладывая на диаграмме для различных давлений значения s и h» для воды при температу­ре, кипения, а также s« и h« для сухого насыщенного пара, получаем нижнюю и верхнюю пограничные кривые.

Рисунок 3 — h-s-диаграмма водяного пара

Изобары в двухфазной области влаж­ного пара представляют собой пучок рас­ходящихся прямых. Действительно, в процессе р=const , или , т. е. тангенс угла на­клона изобары в h, s-координатах числен­но равен абсолютной температуре данно­го состояния. Так как в области насыще­ния изобара совпадает с изотермой, тангенс угла наклона постоянен и изо­бара является прямой. Чем выше давле­ние насыщения, тем выше температура, тем больше тангенс угла наклона изо­бары, поэтому в области насыщения пря­мые р = const расходятся. Чем больше давление, тем выше лежит изобара. Кри­тическая точка К лежит не на верши­не, как это было в р — v и Т — s-диаграммах, а на левом склоне пограничной кри­вой.

В области перегрева температура па­ра (при постоянном давлении) растет с увеличением s примерно по логарифми­ческой кривой и крутизна изобары увели­чивается. Аналогичный характер имеют изобары и в области воды, но они идут так близко от пограничной кривой, что практически сливаются с ней.

При низких давлениях и относитель­но высоких температурах перегретый пар по своим свойствам близок к идеальному газу. Так как в изотермическом процессе энтальпия идеального газа не изменяет­ся, изотермы сильно перегретого пара идут горизонтально. При приближение к области насыщения, т. е. к верхней пограничной кривой, свойства перегрето­го пара значительно отклоняются от свойств идеального газа и изотермы искривляются.

В h s-диаграмме водяного пара нанесены также линии v=const, идущие круче изобар.

Обычно всю диаграмму не выполня­ют, а строят только ее верхнюю часть, наиболее употребительную в практике расчетов. Это дает возможность изобра­жать ее в более крупном масштабе.

Для любой точки на этой диаграмме можно найти р, v, t, h, s, x. Большое достоинство диаграммы состоит в том, что количество теплоты в изобарном про­цессе равно разности ординат конечной и начальной точек процесса и изобража­ется отрезком вертикальной прямой, а не площадью как в Т-s-диаграмме, поэтому hs-диаграмма исключительно широко используется при проведении тепловых расчетов.

Основные термодинамические про­цессы водяного пара. Для анализа рабо­ты паросиловых установок существенное значение имеют изохорный, изобарный, изотермический и адиабатный процессы. Расчет этих процессов можно выполнить либо с помощью таблицы воды и водяно­го пара, либо с помощью h, s-диаграммы. Первый способ более точен, но второй более прост и нагляден.

Общий метод расчета по hs-диаг­рамме состоит в следующем. По извест­ным параметрам наносится начальное состояние рабочего тела, затем прово­дится линия процесса и определяются его параметры в конечном состоянии. Далее вычисляется изменение внутрен­ней энергии, определяются количества теплоты и работы в заданном процессе.

Изохорный процесс. Из диаграммы на рисунке видно, что нагреванием при постоянном объеме влажный пар можно перевести в сухой насыщен­ный и перегретый. Охлаждением его можно сконденсировать, но не до конца, так как при каком угодно низком давле­нии над жидкостью всегда находится не­которое количество насыщенного пара. Это означает, что изохора не пересекает нижнюю пограничную кривую.

Рисунок 4 — Изохорный процесс водяного пара.

Изменение внутренней энергии водного пара при v=const

.

Данная формула справедлива и для всех без исключения остальных термоди­намических процессов.

В изохорном процессе работа 1=0, поэтому подведенная теплота расходует­ся (в соответствии с первым законом термодинамики) на увеличение внутрен­ней энергии пара:

Изобарный процесс. При подводе теплоты к влажному насыщен­ному пару его степень сухости увеличи­вается и он (при постоянной температу­ре) переходит в сухой, а при дальнейшем подводе теплоты — в перегретый пар (температура пара при этом растет). При отводе теплоты влажный пар конденсируется при Ts= const.

Полученная в процессе теплота рав­на разности энтальпий:

.

Работа процесса подсчитывается по формуле:

.

Рисунок 5 — Изобарный процесс водяного пара

Изотермический процесс. Внутренняя энергия водяного пара в процессе T = const не остается постоян­ной (как у идеального газа), так как изменяется ее потенциальная составляю­щая. Величина находится по формуле .

Количество полученной в изотерми­ческом процессе теплоты равно

.

Работа расширения определяется из первого закона термодинамики:

.

Рисунок 6 — Изотермический процесс водяного пара

Адиабатный процесс. При адиабатном расширении давление и температура пара уменьшаются, и перегре­тый пар становится сначала сухим, а за­тем влажным. Работа адиабатного про­цесса определяется выражением

.

Рисунок 7 — Адиабатный процесс водяного пара

Уравнение состояния реальных га­зов

В реальных газах в отличие от иде­альных существенны силы межмолеку­лярных взаимодействий (силы притяже­ния, когда молекулы находятся на значи­тельном расстоянии, и силы отталкивания при достаточном сближении их друг с другом) и нельзя пренебречь собствен­ным объемом молекул.

Наличие межмолекулярных сил от­талкивания приводит к тому, что молеку­лы могут сближаться между собой толь­ко до некоторого минимального расстоя­ния. Поэтому можно считать, что свобод­ный для движения молекул объем будет равен , где b — тот наименьший объем, до которого можно сжать газ. В соответствии с этим длина свободного пробега молекул уменьшается и число ударов о стенку в единицу времени, а следовательно, и давление увеличива­ется по сравнению с идеальным газом в отношении , т. е.

.

Силы притяжения действуют в том же направлении, что и внешнее давле­ние, и приводят к возникновению молеку­лярного (или внутреннего) давления. Сила молекулярного притяжения каких-либо двух малых частей газа пропорцио­нальна произведению числа молекул в каждой из этих частей, т. е. квадрату плотности, поэтому молекулярное давле­ние обратно пропорционально квадрату удельного объема газа: рмол = а/v2, где а — коэффициент пропорциональности, зависящий от природы газа.

Отсюда получаем уравнение Ван-дер-Ваальса (1873 г.):

,

или

.

При больших удельных объемах и сравнительно невысоких давлениях ре­ального газа уравнение Ван-дер-Ваальса практически вырождается в уравнение состояния идеального газа Клапейрона, ибо величина a/v2

(по сравнению с p) и b (по сравнению с v) становятся прене­брежимо малыми.

Уравнение Ван-дер-Ваальса с ка­чественной стороны достаточно хорошо описывает свойства реального газа, но результаты численных расчетов не всег­да согласуются с экспериментальными данными. В ряде случаев эти отклонения объясняются склонностью молекул ре­ального газа к ассоциации в отдельные группы, состоящие из двух, трех и более молекул. Ассоциация происходит вслед­ствие несимметричности внешнего элек­трического поля молекул. Образовавши­еся комплексы ведут себя как самостоя­тельные нестабильные частицы. При столкновениях они распадаются, затем вновь объединяются уже с другими мо­лекулами и т. д. По мере повышения тем­пературы концентрация комплексов с большим числом молекул быстро уменьшается, а доля одиночных молекул растет. Большую склонность к ассоциа­ции проявляют полярные молекулы во­дяного пара.


источники:

http://mirmarine.net/sudovoditel/gidrometeorologiya/1294-uravneniya-sostoyaniya-atmosfernogo-vozdukha

http://pandia.ru/text/78/050/79836.php