Уравнение стационарного температурного поля в общем виде

Температурный градиент. Процесс теплопроводности, как и другие виды теплообмена, может иметь место только при условии, что в различных точках тела (или системы тел) температура

Температурное поле

Процесс теплопроводности, как и другие виды теплообмена, может иметь место только при условии, что в различных точках тела (или системы тел) температура неодинакова. В общем случае процесс распространения теплоты теплопроводностью в теле сопровождается измене­нием температуры, как в пространстве, так и во времени. Температурное состояние тела (или системы тел) можно охарактеризовать с помощью температурного поля.

Температурным полем называют совокупность значений температу­ры во всех точках тела для каждого времени.

Поскольку температура различных точек тела определяется ко­ординатами x, y, z и временем τ, то в общем случае уравнение температурного поля имеет вид:

(1)

Различают стационарные и нестационарные температурные поля. Если температура в точках тела не изменяется во времени, то такое температурное поле называют стационарным или установившимся, если же температура меняется во времени, то поле называют нестационар­ным или неустановившимся.

Температура в теле может меняться в направлении одной, двух или трех координатных осей. В соответствии с этим различают одно­мерные (линейные), двухмерные (плоскостные) и трехмерные (пространственные) температурные поля.

В соответствии с изложенной классификацией температурных по­лей уравнение (1) описывает трехмерное нестационарное поле.

Уравнение трехмерного стационарного поля имеет вид:

; (2)

Уравнение одномерного нестационарного поля принимает вид:

; (3)

Наиболее простой вид имеет уравнение одномерного стационар­ного температурного поля:

; ; (4)

Температурный градиент

Геометрическое место точек в температурном поле, имеющих одинаковую температуру, называется изотермической поверхностью.

Так как одна и та же точка тела не может одновременно иметь различные температуры, то изотермические поверхности не пересекаются, они либо обрываются на поверхности тела, либо замыкаются сами на себя внутри тела. Пересечение изотермических поверхностей плоскостью дает на этой плоскости семейство изотерм, которые обла­дают теми же свойствами, что и изотермические поверхности.

На рис.1 приведены изотермы, температуры которых отличаются на Δt. Температура в теле изменяется только в направлениях, пересекающих изотер­мические поверхности (направление x). При этом наибольший перепад темпера­туры на единицу длины происходит в направлении нормали n к изотермической поверхности. Предел отношения измене­ния температуры Δt к расстоянию между изотермами по нормали Δn при усло­вии, что Δn→ 0 , называют темпе­ратурным градиентом, т.е.

(5)

Температурный градиент — векторная величина. За положительное направление вектора gradt принимается направление по нор­мали к изотермической поверхности в сторону возрастания температу­ры. Скалярную величину gradt мы также будем называть темпера­турным градиентом. Значение gradt не одинаково для различных то­чек изотермической поверхности, оно больше там, где расстояние между изотермическими поверхностями меньше.

Проекции вектора gradt на координатные оси Ox, Oy, Oz равны:

(6)

Теплопроводность при стационарном режиме

Теплопроводность при стационарном режиме

  • В установившемся состоянии температурное поле T (x, yₜr, t) не зависит от времени. То есть,^ = 0.Дифференциальное уравнение теплопроводности (II-55)^ = aV2T (IV-I) DX is (П-56 И Р-57) Eh2du * Ldz2(IV-2)для решения конкретной задачи в Формулу (IV-2) необходимо добавить соответствующее граничное условие. Рассмотрим несколько простых случаев Определение стационарного температурного поля для объектов различной формы. § 1.

To рассмотрим теплопроводность тела плоская стенка неограниченная плоская стенка с подходящим температурным полем Его толщина равна 6, его поверхность параллельна плоскостям Y, z декартовой системы координат и находится при x = 0 и x = 6(рис. IV-1).Давайте поддержим его этими поверхностями Соответственно, задаются температуры 7 \и Т₂, то есть граничные условия типа 1(Глава 2,§ 5).

Выражение (IV-3) немедленно интегрируется. Людмила Фирмаль

Если Γ и T₂ не зависят от координат y и z, то, очевидно, искомое температурное поле Уравнение (IV-2), которое зависит от этих координат и определяет температуру T (x), принимает вид

= 0 (IV-3) dx2V ’при граничном условии. Г= 7 \ при x-0 (IV-4) T-X Tn-6.Общая форма решения T (x)=C₁X4-C₂,(1V-5).Где C. И C₂-произвольная константа, определяемая из граничного условия. (IV-4).фактически, если вы установите x = 0 в(IV-5)и используете первую формулу (IV-4), вы получите 2-е условие (IV-4) и (на основе) Л=С₂, (IV-6), x = 6. (IV-6) есть фига IV -!.

Теплопроводность плоской стенки т = С.6+С₂ = С.6+ 7 ′., (IV-7) где C = ^, 16 наконец, решение уравнения (IV-3) при граничном условии(1V-4) видно из (IV-8)(1V-8 T(x)линейно зависит от x, и эта зависимость T (x)= f (x)показана на рисунке вдоль толщины стенки. IV-1.Тепловой поток q можно определить по закону Фурье (1-3): q = — XgradГ, или В нашем случае, дифференцируя распределение температуры по толщине стенки (IV-8), мы видим, что dxowhence (IV-9) получается из Формулы (IV-9), которая равна 7′. > Flux тепловой поток положительный, то есть он направлен вдоль положительного направления оси X. В 7 \7 ′ 2 он направлен в противоположную сторону.

Этот результат является результатом второго закона термодинамики. В частности, тепло передается от нагретого тела к неотапливаемому. Количество тепла, проходящего через стенку за единицу времени, легко вычисляется с помощью (IV-9), q = ^ = X (T₁ — ^ 7′) 4 -/⁷. (1V-10) перепишите уравнение Фурье (P-54) в цилиндрической системе координат с цилиндрическим wall. To сделайте это, декартовы координаты и Цилиндрические координаты (рис. IV-2), x = r cos B, y = r sin B, z = R.

После проведения изменения этой переменной форма уравнения цилиндрической системы координат (P-54) равна dT / dTT- = а-э \ ДГ * \ _ ДТ Р ДГ \ &т р * ДВ. Рассмотрим 1D процесс стационарной теплопроводности на бесконечной цилиндрической стенке (рис. IV-3).Если на рисунке IV-2.Соотношение Прямоугольные и цилиндрические координаты T рис. 1в-3.Теплопроводность цилиндрической стенки, внутренней (r = r) и внешней (r-RJ) поверхности стенки.

Они не зависят от угла Вига, искомое температурное поле не зависит от этих переменных, и если оно стационарно, то уравнение (IV-11) имеет вид (FT (g) 1 dT ® Q dr-r dr (IV-12) при заданном граничном условии типа 1 R = r₁T =Г= = ₂ ₂t =t 決定 определяет распределение температуры по всей толщине стенки. Формула (IV-12) Переписывание (IV-13) (IV-14) Теперь 1 раз integration. As в результате после 2-го интеграла получаем общее решение уравнения. (IV-14): T(g)= CJn g 4-C₂. (IV-15) постоянная интеграция C! И С₂ должно быть определено из граничного условия(IV-13).Р= rxT₁=С₁1пг₁+С₂]и (IV-16)⁼ГГ2Т2⁷ ⁷1ПГ₂4″ С₂.

Если вы решите для (IV-16) относительно Ca, вы найдете первую интегральную константу Ca≥1n-и вторую константу Ca₂C = Tj-Cjlnr ^-br ^ linr ^ 1гг-ЛПП. ’1′ 1 замена Найдя значения Cb и C₂ в Формуле (IV-15), получим искомое распределение температуры по всей толщине цилиндрической стенки In-T ® =Tₗ+(T,-T₁) — I. (IV-17) ’ I следовательно T(g) Логарифмически зависит от радиусной координаты r. плотность теплового потока q определяется по закону Фурье. Основываясь на (IV-17), существует проходящее количество тепла.

Цилиндрическую стенку, которая указывает на единицу длины трубы, можно определить по формуле: Q-qF-q-2nr = inK (T1-T.). (IV-19) — — — в ri Q естественно не зависит от R. Тепло не будет накапливаться anywhere. By по аналогии с многослойной цилиндрической стенкой(1-6) принимается тепловое сопротивление многослойной цилиндрической стенки (рис. IV-4). Равна сумме тепловых сопротивлений отдельных слоев. На основе этого утверждения можно использовать формулу (IV-19) для создания формулы, определяющей количество тепла, которое проходит через нее.

Q-присваивается единице длины стены. Преобразуйте уравнение сферической стенки (P-54) в сферическую систему координат. Используйте его для этого Следующая зависимость между Декартовыми координатами и сферическими координатами (рис. IV-5): x = r sinccosф, y = r sin 8 sinФ, z = r cos 8.Проводимость многослойной цилиндрической стенки В В сферической системе координат форма уравнения (P-54) равна dTha2?Как туда добраться, 2 at, 1 d F. dT \ₜdtL3r3g dr’g2sinea\ ae /1_g2sin26dF2] (IV-2I) рассмотрим стационарный процесс Теплопроводность внутренней поверхности (r = rx) и наружной поверхности (r =r₂) сферической стенки (оболочки) (рис. IV-6) соответственно.

Т₂. Семь Т₂ является постоянным. То есть она не зависит от направления, которое определяется углом 8 и cp. Поэтому требуемое температурное поле сферической стенки не зависит от этих переменных、 Функция радиальной переменной r. вид дифференциального уравнения (1V-2I) в этом случае равен IV-5.Корреляция декартовых и сферических координат IV-6. Для решения задачи теплопроводности граничного значения сферической конформации (IV-22, IV-23) необходимо определить распределение температуры по всей толщине сферической стенки. Переписывание Формулы (IV-22) (Ив-24) \ m2dr доктор! сначала в результате первого интеграла получается dr r* второй .

Интеграл дает Г ® =Г (IV-25).Общее использование граничных условий (IV-23) Решите уравнение (1V-25) для определения любых констант Ci и C2:r — — — rx m \ — — ^ + c2, T \ A = — — — ^ + C2. для r = r2 G # Если вы решите эти уравнения относительно C и C₂, вы получите 1 _ _ _ _ _ 1_ Заменяет \ G «-G1 G1 gg и G₂-G1 Cx и C₂ общим решением (IV-25).Упрощенный, наконец m = r = +(T₁-t₁) r \ yr от Gg-gx (IV-26) (IV-26), температура T (g) Она изменяется по толщине сферической стенки вдоль гиперболы. Определите тепловой поток из раствора (IV-26) — CL-L) ’ 1 ’» количество тепла, передаваемого через сферу 1 yy-yy.

В единицу времени, 2 =₉Г=₉.4лг2 = 4ях (л-Г₂) -!он равен а^ -. (IV-27) / ■ » — ’ 1 не зависит от r по тем же причинам, что и для цилиндрических стенок.§ 2.Теплопроводность тела с Внутренние источники тепла процессы теплопроводности в твердых телах обусловлены внешними условиями, то есть распределением температуры и теплового потока Подвод (отвод) тепла от поверхности тела и образующейся в результате внешней среды.

Математически это выражалось в выделении определенных граничных условий на поверхности тела. Рассмотрим процесс теплопередачи, когда помимо такого внешнего источника тепла существует еще и внутренний источник (сток), который распределяется определенным образом. Объем тела. Вы можете привести много примеров таких processes. It ограничивается упоминанием о том, что тепло образуется, когда электрический ток протекает через проводник.

Тепло Количество тепловыделяющих элементов выделяется и в замедлителях реактора. Когда в рассматриваемом объеме тела происходит определенная химическая реакция, он высвобождается(поглощается) В таком вопросе теплопроводности желательным обычно является распределение температуры внутри тела субъекта, а мощность внутреннего источника тепла (стока) принимается во внимание Это было дано. Мощность источника (стока) — это количество тепла, которое выделяется (поглощается) единицей объема тела за единицу времени.

Эта сумма показана в qᵥ、 Килоджоули / кубический метр / сек (kA s /l13-sec).В зависимости от характера процессов, происходящих в рассматриваемом теле, источник тепла (Сток) может выбираться по-разному. Или концентрируйтесь на определенной части или точке объема тела в течение определенного времени, или равномерно распределяйтесь по всему объему, в зависимости от температуры. Уравнения Теплопроводность при наличии внутреннего источника тепла описывается в виде cp% — = Ky’t +qᵥ. (IV-28) изменение теплоты на единицу объема за 01 единицу времени、 .

Здесь имеет место не только процесс теплопроводности, который является первым членом в правой части формулы (IV-28), но и выделение (поглощение) тепла в единице объема qv, которое мы рассмотрим ниже. Рассматривается задача о постоянном во времени и равномерно распределенном по всему источнику тепла. Теплопроводность бесконечной стенки с внутренним источником тепла плоскость YY и неограниченная стенка (рисунок IV-7) очищаются с обеих сторон при постоянной температуре жидкости Tf. Коэффициент теплопередачи .

A и выход равномерно распределены Объем qᵥ стенки источника тепла равен given. It необходимо найти распределение температуры по всей толщине стенки. Состояние поверхности стенки x = — I n x = I является постоянным, то есть, В зависимости от координат y и z температура будет функцией только от x, а уравнение (IV-28) будет иметь вид xs_ ⁼vv IV IV’2⁾.Однако, — 1 — = а(Тх ₌ / — г.) (IV-30) dx x = 1 * последний и В других случаях источник тепла может зависеть не только от координат, но и от температуры. Для аналогичных условий симметрия на поверхности x—I .

Температурное поле для плоскости x = 0 может быть заменено условием dx x-o (IV-31).От температуры очищающего раствора вводят Счетную температуру (IV-32)и затем кромку Задача (IV-29 напишите qydx2X dx x> = Q. интегрируйте уравнение (IV-33).d / \ _ _ _ _ _ Chu ’dx \ dx j X и IV-31) re — (IV-33) (IV) B 7 1 Tf X g *’ / 1 1 x рисунок IV-7.Теплопроводность плоской стенки с источником тепла после первого уплотнения приобретает вид (IV-35), а после второго уплотнения общий раствор (IV-33) получается в виде x 4-Cj. х 4-Cₜ. Граничное условие (IV-36) (IV-34) используется для определения констант /

Cx и C₂. Из (IV-35) и 2-го граничного условия (IV-34), C,= 0. dx (IV-37) в начале условия, где x = I (IV-34), получаем 2A. то есть, подставляя значение константы произведения С₂ в (IV-37), получаем решение вида (IV-38). Решение квадратично зависит от x (параболически).С другой стороны, если не было внутреннего источника, зависимость была линейной[ссылка(Iv-8)].Представьте себе решение(IV-38) Обобщенная координата. Если вы выбираете как раздел/2Liv, то все термины (IV-38), количество с размером температуры, и половина своей толщины / характерного размера стены.

  • Левая сторона (IV-39) (IV-39) является безразмерной температурой поиска. А правая сторона содержит независимые переменные в виде безразмерных координат-y и комплексных параметров Виде био-стандартом. Следовательно, (IV-39)-это (P1-13a) * q.. l2(характеристическая температура Oo = — ^ y — |является специфической функцией вида, которая получается на основе анализа) Решите уравнение (IV-33) с граничным условием (IV-34).Теплопроводность цилиндрической стенки с источником тепла делают цилиндрическую стенку (рис. IV-8) однородной.

Распределенный по всей его толщине источник тепла охлаждается снаружи жидкостью с температурой Tf \коэффициентом теплопередачи a и прочностью источника тепла qᵥ.It требуется Найти распределение температуры= = T-Tf по толщине стенки. •В этом случае вводить параметрические критерии не требуется. Если полый цилиндр в вопросе можно рассматривать Для d (g) используется уравнение dr2g, поскольку если температура окружающей среды.

Есть рисунок 1В-8.Теплопроводность цилиндрической стенки с источником тепла chu g, Cx dr X 2. Людмила Фирмаль

Tf постоянна, то желаемое распределение температуры зависит только от радиальных координат. на внешней поверхности цилиндрической стенки dr X (IV-40) r = r, предполагая, что теплообмен происходит по закону Ньютона,=: ab |(IV-41)dr r =rₜ (Ив-42) рублей. df> dr тогда dr \ dr J X если записать формулу (IV-40) в виде интеграла, то получится 1 2. ′ g (IV-44) итерационно интегрируют и получают общее решение уравнения (IV-43) 0 =—+Cilⁿr+ C»- Используйте (IV-45) A 4 граничных условия (IV-41) и (IV-42) для определения любых констант Cx и C₂.

Из условия (IV-42), M, C, ₀dr r ^rₜ2X q», то есть из условия (IV-41) определим С₂ отсюда (IV-45) и подставив значение и С₂ получим конкретное решение формулы(IV-40). Представьте себе решение (IV-46) с цилиндрической стенкой (IV-46) с обобщенными координатами(1V-46).Разделите все члены (IV-46) и выберите внешний (охлаждающий) радиус в качестве характерного размера С поверхности r2 цилиндрической стенки получаем O 4X. левая сторона (IV-47) является безразмерной искомой температурой, как и в(1V-39), а независимая переменная переходит в правую сторону. Джи! составной параметр в виде ссылки Biot, в виде g₂.

Как и в случае (IV-39), Формула (IV-47)является специфической функцией вида(1P-13a).Для цилиндрических стержень (r,= 0)обобщенная зависимость (IV-47) принимает вид (IV-48)§ 3. Теплопроводность тела с 2-мерным температурным полем 2-мерное температурное поле T-f (x, y) Получение аналитических решений, удовлетворяющих дифференциальным уравнениям и граничным условиям, рекомендуется для объектов простой формы. Для тела сложной формы решением является.

Громоздкие, в некоторых случаях недоступные. Тогда для фактического расчета аналитическое решение либо упрощается одним из численных методов аппроксимации, либо ставится задача Решайте численно в электронных вычислительных машинах и тому подобное. Мы найдем аналитическое решение дифференциального уравнения для некоторых граничных условий, которые будут представлены ниже.

Для двумерного Формат температурного поля уравнения T = T (x, y) (P-54) имеет вид^ 4-^ = 0. в качестве решения dhadu1 (IV-49)мы применяем метод разделения переменных. Найти решение уравнения в виде Произведение 2 функций, то есть T = f(x, y)= X (x)Y (y), (IV-50), где X (x) — функция только переменной x. Y (y) является функцией только переменной y. Формула т из(IV-50) (1V-49), после деления на X и Y,\ _dtY__________ 1 вы получите d * XY dy * XX1 (IV-51).Поскольку левая сторона (IV-51) не зависит от x и равна значению (правая сторона), это если вы не зависите от y, общие (оба) значения не зависят от x или y. таким образом, общее значение (для обеих частей) уменьшается до постоянного значения. Это полезно для принятия формы k2.

Как и в (IV-56), напишите общее решение (IV-53) X = Cxeⁱkx+C₂e〜ⁱkx, (IV-59).Здесь (\и С₂-произвольные константы. Однако формулы e1x и е-1 actually на самом деле фактические значения х, кроме Х = 0.Используя Эйлера официальный e±ТТХ₌потому что£Х±З Син х (ИЖ-60) (ИЖ-59)* х — сов / экс-ЖБ грех КХ. (ИЖ-61) Можно написать общее решение Формулы (IV-59) на основе (IV-60) в виде T = x XU =(AcosЛх4-Bsin KX) (SEC>〜J-de-K>) (IV-62).

Применяйте его для решения конкретных задач. Теплопроводность плоских стенок с 2-мерным температурным полем рассмотрим конкретную задачу теплопроводности плоских стенок (рис. IV-9).Пусть T-форма температурного поля на стене = /(х,//), температуры в направлении оси Z во всех точках (вдоль стены толщина) X = СЈ е ’ * — r4C₂e -и KX = Ки(coskx + я грешу опций)-| −4- СГ (потому что / с GX-мне грех КХ)=(СЈ-Ф-C₂) потому что с KX + я (Cₜ-C₂) грех КХ — = а потому что КХ ^ — ПБ грех КХ -, (а = с ^ СГ, 5 = ^ −0.).

Тот же смысл. Избыточная температура(гл. Уравнение Лапласа (P-56) для этой задачи в 111,§ 2) имеет вид dx2du2. Граничное условие типа 1 O = T-Ta = 0 задается для x = 0 и x = L. где 0-искомая избыточная температура стенки. Ta-поддерживается температура боковой стенки Постоянный. (IV-63) (IV-64) 0 — > 0 как y — > — oo. (IV-66) (рисунок 1V-9) рисунок IV-9. Теплопроводность в 2D температурном поле, Т= / (*•У) где 7 \ — температура на нижнем конце (см. Рисунок). 1В-9) стены поддерживаются постоянными.

Решением уравнения (IV-63) будет уравнение (1V-62). в последнем случае абсолютная переменная температуры T заменяется избыточной переменной F. Используя граничные условия (IV-64 и IV-66), определите постоянные коэффициенты A, B, C, D. Из первого условия(1V-64) выполните x-0 и A-0. x = 0 должен быть равен нулю, но cosx |z₌ ₀ = coso = 1, то есть если он не равен пуле, то коэффициент a должен быть равен нулю. Поскольку нас интересуют нетривиальные решения, а именно, они не равны нулю Аналогично коэффициент B равен нулю, поэтому если x = L, то требуется sinkL 0.Значение нетривиального решения, удовлетворяющего границе уравнения (IV-63) .

Условие (IV-64) называется собственным значением, а нетривиальное решение этой задачи называется собственной функцией, соответствующей заданному eigenvalue. So кл- ПЛ, вот н= 0、1、2、3、…в результате k>/ / L, k₂-2n / L,…kₙ= !! Си.,…Из условия (IV-66) следует, что коэффициент C = 0 (y — * oo, если e * y неограничен) Рост.) При A = 0, C-0 решение(1V-62) не может принимать вид^-BDe sin ^-^-x ^ =£e sin ^ — ^ ^ x ^ (IV-67) решение (IV-67) удовлетворяет дифференциальному уравнению (1V-63). любое натуральное значение n. из полученного решения (IV-67) видно, что для 7 -Ta 0 условие (IV-65) не выполняется для выбора E-En. 0 после этого .

Единственным решением проблемы является тривиальное решение 0 = 0.С другой стороны, сумма любых 2 (и, следовательно, любого конечного числа) решений линейных однородных производных Уравнение также является решением. Если мы суммируем число решений типа (IV-67) до бесконечности, то увидим, что мы можем выбрать E = En так, чтобы условие (IV-65) было выполнено(или、 Условие (IV-66)] и бесконечная сумма d = 2£e_T «sin (- ^x’) (IV-68) сходятся, а краевые задачи (IV-63), (IV-64), (IV-65) и (IV-66) сходятся.

Как найти Ep Используйте граничное условие (IV-68) (IV-65). если y = 0, то форма выражения (IV-68) равна (IV-69). чтобы понять формулу (IV-69), вспомним следующее положение из математики. Функция является F (x)с периодом 2n дифференцируема или, по крайней мере, кусочно дифференцируема и может быть расширена рядом Фурье следующих форм: где a0, an и bn Величина, которая называется коэффициентом ряда Фурье и определяется по формуле: lnp-j /(x) cosnxJx (l = 1,2 t 3,…(IV-71) — — — l l°0 = ’ T (IV-713) — — — l l 6n = — J — (F (x) sin nxdx(n = l, 2, 3. ). л.(ИЖ-72) с / — — — Л. Если F (х) нечетная функция (χχ) потому что NX-это странно. Помнишь? В случае нечетной функции выполняется равенство f (- x)= — f (x).

Тогда об этом л§f (x) dx = 0-и, следовательно, в случае (IV-71) an = jf (x) cos nx dx = 0(n = 1, 2, 3,…). — Я имею в виду… Вид ряда Фурье нечетных функций (IV-70) имеет вид f(x)= S b sin px. Чтобы определить bn из (IV-73) n = I (IV-72), для четной функции используйте равенство f (- X) 0), то, изменив переменную, можно переписать Формулы (IV-73) и (IV-75) в виде ZW = BS&». грех (- ПХ) (IV-76) и L sino теперь возвращаются к Формуле (IV-69).

Положим Dx)=в этом случае Формулы (IV-69)и(IV-76) идентичны. Таким образом, выражение (IV-69) представляет собой ряд Фурье следующих констант: Интервал 10, ZJ(Z7 > 0).Константа En равна Ln и по формуле (IV-77) y-x)/ x, где n = 1,2,3……….(IV-77) 0 n = 1, 3, 5, cos pl—1 = n = 2, 4, 6, cos pl-4-1 и En = 0.Конкретные решения (IV-68) могут быть записаны в окончательном виде (IV-78).Здесь мы используем следующие результаты: если функция Dx) с периодом разлагается равномерно В случае сходящегося ряда последний должен быть ближе к Фурье. (Серия (IV-78) четко сходится равномерно.

Отметим, что согласно (IV-78), температура стенки в любой точке не зависит. Теплопроводность в случае учета отсутствия теплового потока на стене. Из полученного решения также ясно, что если = 0, то решение 0 = 0.§ 4. При передаче тепла от жидкости (а.) до падения теплопроводности в ребрах определенных пересечений через сплошную стенку к газу (А₂), общее тепловое сопротивление!K определяется. 4 -= по формуле (1-12)-+ 4-± ИЖ — ⁷⁹ > к-Аль — Xa₂ последний срок 1 /a₂ вносит наибольший вклад в общее тепловое сопротивление, 1, а в некоторых случаях и 2-х значное число больше, чем первых 2-х значное число членов 1 / aP обычно, a₂ не может быть увеличен.

Кроме того, для усиления теплопередачи поверхность стенки со стороны газа увеличена ребрами. Рассмотрим теплопроводность некоторой кромки Раздел 1112).Упростите фактический процесс и предположите следующее: 1)температура ребра T изменяется только вдоль оси Z. 2) тепло передается только в окружающую среду Верхняя (Lb) и нижняя (Lb) поверхности ребра. 3) коэффициент передачи тепла от края нервюры к окружающей среде a постоянн значение, и поток тепла Формула = a (T-T.), (IV-80), где Tf-температура окружающей среды.

Выведем дифференциальное уравнение теплопроводности для ribs. To для этого создадим уравнение теплового равновесия выделенного объема qz2hb-qz + bz2hb-a (2b & z) (T-Tj)= ребро в виде 0 (рисунок IV-10).Разделите все члены полученного уравнения на 2 hb и найдите ограничение Az O (IV-81) dz h. подставьте (IV-81) вместо q. Значение из уравнения закона Фурье (1-Za). в результате получаем искомое дифференциальное уравнение теплопроводности для рассматриваемого ребра dza.

Дополнительные граничные условия: 1) t = Tda (IV-83) решение z = O, z-L обозначается обобщенной переменной (III-13a).Введение температурных безразмерных параметров (IV-84) ’W-координата 2 tf= -^ -. (IV-85) (IV-82) эталонный Bi = — y и параметрический эталонный P = — (для характерных размеров ребер、 Его длина L и половина толщины L). в этом случае наиболее удобное для решения сочетание критериев Bi и P принимает вид: условие задачи обобщенной переменной описывается следующим образом:.

Дифференциальные уравнения (IV-82) (IV-86) дополнительные граничные условия (IV-87) и решение системы br = o = 1 (IV-88) (IV-86, IV-87, IV-88) получены с помощью гиперболической функции в виде Или позвольте мне ввести характеристики эффективности реберной кости 8-NZ-(THN) sh NZ (IV-89) chN (l-Z) ch N (IV-90).Используйте отношение тепло которое на самом деле в качестве его меры Тепло, рассеиваемое поверхностью ребра, рассеивается, если температура всей поверхности ребра равна Tw. As в рассматриваемом случае и эффективность ребер Формула fOdZ-т — — — — — — — — — — — 5-L «1-г > I» (IV-91) о (IV-92) может быть определена.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Уравнение стационарного температурного поля в общем виде

Для просмотра сайта используйте Internet Explorer

ЧАСТЬ 2. ТЕПЛОМАССООБМЕН

Тема 9. ТЕПЛОПРОВОДНОСТЬ

9.1.Основные понятия и определения

Теория теплопередачи, или теплообмена, представляет собой учение о процессах распространения теплоты в пространстве с неоднородным полем температур.

Существуют три основных вида теплообмена: теплопроводность, конвекция и тепловое излучение.

Теплопроводность — это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Конвекция осуществляется путем перемещения в пространстве не­равномерно нагретых объемов среды. При этом перенос теплоты не­разрывно связан с переносом самой среды.

Тепловое излучение характеризуется переносом энергии от одного тела к другому электромагнитными волнами.

Часто все способы переноса теплоты осуществляются совместно. Например, конвекция всегда сопровождается теплопроводностью, так как при этом неизбежно соприкосновение частиц, имеющих различные температуры.

Совместный процесс переноса теплоты конвекцией и теплопроводностью называется конвективным теплообменом. Частным случаем конвективного теплообмена является теплоотдача — конвективный теплообмен между твердой стенкой и движущейся средой. Теплоотдача может сопровождаться тепловым излучением. В этом случае перенос теплоты осуществляется одновременно теплопроводностью, конвекцией и тепловым излучением.

Многие процессы переноса теплоты сопровождаются переносом вещества — массообменном, который проявляется в установлении равновесной концентрации вещества.

Совместное протекание процессов теплообмена и массообменна называется тепломассообменном.

Теплопроводность определяется тепловым движением микрочастиц тела. В чистом виде явление теплопроводности наблюдается в твердых телах, неподвижных газах и жидкостях при условии невозможности возникновения в них конвективных токов.

Передача теплоты теплопроводностью связана с наличием разности температур тела. Совокупность значений температур всех точек тела в данный момент времени называется температурным полем. В общем случае уравнение температурного поля имеет вид:

,

Температура может быть функцией одной, двух и трех координат, соответственно температурное поле будет одно-, дву- и трехмерным. Наиболее простой вид имеет уравнение одномерного стационарного температурного поля:

, .

Если соединить все точки тела с одинаковой температурой, то получим поверхность равных температур, называемую изотермической. Так как в определенной точке тела в данный момент времени может быть только одна температура, изотермические поверхности не пересекаются; все они либо замыкаются на себя, либо заканчиваются на границе тела. Пересечение изотермных поверхностей плоскостью дает на ней семейство изотерм. Интенсивность изменения температуры в каком-либо направлении характеризуется производной , принимающей наибольшее значение в направлении нормали к изотермической поверхности

; ; .

Вектор называется температурным градиентом и является мерой интенсивности изменения температуры в направлении по нормали к изотермной поверхности. Направлен он в сторону возрастания температуры.

9.2.Закон Фурье

Согласно гипотезе Фурье, количество теплоты d 2 Qτ, проходящее через элемент изотермической поверхности dF за промежуток времени , пропорционально температурному градиенту :

.

.

Проекции вектора q на координатные оси соответственно:

.

Уравнения (9.4) и (9.5) являются математическим выражением основного закона теплопроводности — закона Фурье.

Количество теплоты, проходящее в единицу времени через изотермическую поверхность F, называется тепловым потоком:

; ; .

Полное количество теплоты, прошедшее через эту поверхность за время τ, определится из уравнения

.

9.3.Коэффициент теплопроводности

Коэффициент теплопроводности является физическим параметром вещества, характеризующим его способность проводить теплоту. Коэффициент теплопроводности определяется из уравнения (9.4):

.

Численно коэффициент теплопроводности равен количеству теплоты, проходящему в единицу времени через единицу изотермической поверхности при условии gradt=1. Его размерность Вт/(м·К). Значения коэффициента теплопроводности для различных веществ определяются из справочных таблиц, построенных на основании экспериментальных данных. Для большинства материалов зависимость коэффициента теплопроводности от температуры приближенно можно выразить в виде линейной функции

.

Наихудшими проводниками теплоты являются газы. Коэффициент теплопроводности газов возрастает с увеличением температуры и составляет 0,006÷0,6 Вт/(м·К). Следует отметить, что верхнее значение относится к гелию и водороду, коэффициент теплопроводности которых в 5—10 раз больше, чем у других газов. Коэффициент теплопроводности воздуха при 0 0 С равен 0,0244 Вт/(м·К).

Для жидкости λ=0,07÷0,7 Вт/(м·К) и, как правило, уменьшается с увеличением температуры. Коэффициент теплопроводности воды с увеличением температуры возрастает до максимального значения 0,7 Вт/(м·К) при t=120 0 С и дальше уменьшается.

Наилучшими проводниками теплоты являются металлы, у которых λ=20÷418 Вт/(м·К). Самый теплопроводный металл — серебро. Для большинства металлов коэффициент теплопроводности убывает с возрастанием температуры, а также при наличии разного рода примесей. Поэтому коэффициент теплопроводности легированных сталей значительно ниже, чем чистого железа.

Материалы с λ 2 ·К). Коэф­фициент теплоотдачи численно равен количеству теплоты, отдаваемому или воспринимаемому единицей поверхности в единицу времени при разности температур между поверхностью тела и окружающей средой в один градус. Этот коэффициент учитывает все особенности явлении теплообмена, происходящие между поверхностью тела и окружающей средой. Плотность теплового потока, передаваемого от поверхности тела в окружающую среду,

.

Согласно закону сохранения энергии, эта теплота равна теплоте, подводимой к поверхности изнутри тела путем теплопроводности:

.

Переписав последнее уравнение в виде:

.

9.4.3.Теплопроводность через плоскую стенку при граничных условиях первого рода

,

Рассмотрим однородную плоскую стенку толщиной δ (рис. 9.2). На наружных поверхностях стенки поддерживаются постоянные температуры tс1 и tс2. Коэффициент теплопроводности стенки постоянен и равен λ. При стационарном режиме () и отсутствии внутренних источников теплоты (qv=0) дифференциальное уравнение теплопроводности примет вид:

.

,

Граничные условия первого рода запишутся следующим образом: при x=0 t=tc1; при x=δ t=tc2. Интегрируя уравнение (9.17), находим

.

После второго интегрирования получаем

.

Постоянные С1 и С2 определим из граничных условий: при x=0 t=tc1, С2=tc1; при x=δ t=tc21·δ+tc1, отсюда . Подставляя значения С1 и С2 в уравнение (9.18), получим уравнение распределения температуры по толщине стенки:

.

Для определения плотности теплового потока, проходящего через стенку в направлении оси Оx, воспользуемся законом Фурье, согласно которому .

Учитывая, что , получим

.

Общее количество теплоты, которое передается через поверхность стенки F за время τ,

.

Отношение называют тепловой проводимостью стенки, обратную ей величину — термическим сопротивлением теплопроводности. Поскольку величина λ зависит от температуры, в уравнения (9.20), (9.21) необходимо подставить коэффициент теплопроводности λс, взятый при средней температуре стенки.


источники:

http://lfirmal.com/teploprovodnost-pri-stacionarnom-rezhime/

http://stringer46.narod.ru/HeatConductivity0.htm

.