Уравнение сторон квадрата по координатам

Задача 31272 Известна точка пересечения диагоналей.

Условие

Известна точка пересечения диагоналей квадрата К( 1,5; 2,5) и уравнение одной из его сторон х-4у = 0. Найти координаты вершин квадрата и составить уравнения его диагоналей.

Все решения

Уравнение стороны запишем в виде
y=(1/4)x
k=1/4
tg α =1/4

Уравнение диагонали в общем виде:
y=k_(1)x+b

(Диагонали квадрата являются биссектрисами прямых углов квадрата, значит угол между стороной и диагональю квадрата равен 45^(o))

Так как
tg( β — α )=(tg β -tg α )/(1+tg β *tg α )
и

y=(5/3)x+b — уравнение диагонали

Подставим координаты точки К

Диагонали взаимно перпендикулярны.
Значит уравнение второй диагонали
y=(-3/5)x+b
Подставим координаты точки К
2,5=(-3/5)*1,5+b
b=3,4

Координаты одной вершины получим как координаты точки пересечения стороны х-4у=0 и диагонали у=(5/3)х
<х-4у=0
<у=(5/3)х

Координаты второй вершины получим как координаты точки пересечения стороны х-4у+24=0 и диагонали у=(-3/5)х+3,4
<х-4у=0 ⇒ y=(1/4)x
<у=(-3/5)х+3,4

Координаты двух других точек можно найти из симметрии.

Уравнение квадрата в декартовой системе координат.

Проанализируем расположение квадрата на координатной плоскости.

В общем случае уравнение квадрата в декартовой (прямоугольной) системе координат принимает вид:

где точка О`(a;b)точка пересечения диагоналей квадрата;

d – длина диагонали квадрата.

В частном случае, когда точка О(0;0) — начала координат, является одновременно и точкой пересечения диагоналей квадрата, уравнение квадрата принимает вид:

где dдлина диагонали квадрата.

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости. Задачи касаются расположения прямых на плоскости (параллельны, перпендикулярны, перескаются), взаимного расположения точек и прямых, вычисления характерстик геометрических фигур (треугольников, ромбов, параллелограммов), нахождения расстояний, длин, уравнений.

Геометрия на плоскости: решения онлайн

Геометрические фигуры

Задача 1. Уравнение одной из сторон квадрата $x+3y-5=0$. Составить уравнения трех остальных сторон квадрата, если $(-1,0)$ – точка пересечения его диагоналей.

Задача 2. Дан параллелограмм $ABCD$, три вершины которого $A(-3,5,-4)$, $B(-5,6,2)$, $C(3,-5,-2)$. Найти четвертую вершину и острый угол параллелограмма.

Задача 3. Найти координаты вершин квадрата, если известны координаты одной вершины $(-8,12)$ и уравнение одной стороны $y=13/7 \cdot x -30/7$.

Задача 4. Вычислить координаты вершин ромба, если известны уравнения двух его сторон $х + 2у = 4$ и $х + 2у = 10$ и уравнение одной из его диагоналей $у = х + 2$.

Задача 5. Две стороны параллелограмма заданы уравнениями $у = х — 2$ и $5у = х + 6$, диагонали его пересекаются в начале координат. Найти длины его высот.

Точки и прямые

Задача 6. Через начало координат провести прямую, равноудаленную от точек $А(2, 2)$ и $В(4, 0)$.

Задача 7. Написать уравнение биссектрис углов между прямыми $2х + 3у = 10$ и $3х + 2у = 10$.

Задача 8. Найти точку, симметричную точке $M(2,-1)$ относительно прямой $x-2y+3=0$.

Задача 9. Даны координаты точки $A$ и уравнение прямой $l$.
Требуется:
1) составить уравнение прямой $l_1$, проходящей через точку $A$ параллельно прямой $l$;
2) составить уравнение прямой $l_2$, проходящей через точку $A$ перпендикулярно прямой $l$;
3) Найти расстояние от точки $A$ до прямой $l$;
4) Изобразить на чертеже точку $A$ и прямые $l, l_1, l_2$.

Задача 10. Даны три точки $M_1(-1;5$), $M_2(2;1)$, $M_3(4;11)$.
2.1 Составить уравнения прямых
А) перпендикулярной; Б) параллельной прямой $M_1M_2$ и проходящей через точку $M_3$, используя:
1) уравнение прямой, проходящей через точку с заданным нормальным вектором;
2) уравнение прямой, проходящей через точку с заданным направляющим вектором;
3) уравнение прямой, проходящей через точку с заданным угловым коэффициентом.
2.2 На отрезке $M_1M_2$ найти координаты точки $M_4$, находящейся к точке $M_1$ в два раза ближе, чем к точке $M_2$.

Задача 11. Прямая задана уравнениями $$ \left\ < \beginx&=5-3\lambda,\\ y&=1+4\lambda.\\ \end \right. $$ Перейти к другой форме задания прямой:
А) по точке и нормальному вектору,
Б) ее общему уравнению.

Задача 12. Даны точки $A, B, C, D$. Запишите уравнения прямых $AB$ и $CD$. Найти расположение этих прямых относительно друг друга.


источники:

http://www.calc.ru/Uravneniye-Kvadrata-V-Dekartovoy-Sisteme-Koordinat.html

http://www.matburo.ru/ex_ag.php?p1=aggeom