Уравнение стоячей волны в струне

Стоячие волны: формулы, характеристики, виды, примеры

Стоячие волны: формулы, характеристики, виды, примеры — Наука

Содержание:

В стоячие волны Это волны, которые распространяются в ограниченной среде, движутся и приходят в части пространства, в отличие от бегущих волн, которые при распространении удаляются от источника, который их породил, и не возвращаются к нему.

Они являются основой звуков, производимых музыкальными инструментами, поскольку легко возникают в закрепленных струнах либо на одном, либо на обоих концах. Они также создаются на плотных мембранах, таких как барабаны, или внутри труб и конструкций, таких как мосты и здания.

Когда у вас есть фиксированная струна на обоих концах, например, у гитары, создаются волны с одинаковой амплитудой и частотой, которые распространяются в противоположных направлениях и объединяются, создавая явление, называемое вмешательство.

Если волны синфазны, пики и впадины выровнены и в результате получается волна с удвоенной амплитудой. В таком случае мы говорим о конструктивном вмешательстве.

Но если мешающие волны не совпадают по фазе, пики одной встречаются с впадинами других, и результирующая амплитуда равна нулю. Тогда речь идет о деструктивном вмешательстве.

Формулы и уравнения

Основными элементами волны, представляющей ее в пространстве и времени, являются ее амплитуда A, длина волны λ и угловая частота ω.

В математическом представлении предпочтительнее использовать k, чем волновое число или количество раз, когда волна встречается на единицу длины. Поэтому он определяется длиной волны λ, которая представляет собой расстояние между двумя долинами или двумя гребнями:

В то время угловая частота относится к периоду или продолжительности полного колебания, например:

А также частота f определяется как:

Также волны движутся со скоростью v в соответствии:

Математическое выражение стоячей волны

Математически мы можем выразить волну синусоидальной функцией или косинусоидальной функцией. Предположим, что у нас есть волны одинаковой амплитуды A, длины волны λ и частоты ω, распространяющиеся вдоль струны и в противоположных направлениях:

Y1 = A sin (kx — ωt)

При их добавлении находим получившуюся волну ир:

Yр = и1 + и2 = A sin (kx — ωt) + A sin (kx + ωt)

Чтобы найти сумму, существует тригонометрическое тождество:

грех α + грех β = 2 греха (α + β) / 2. cos (α — β) / 2

По этому тождеству результирующая волна yр осталось:

Yр = [2A sin kx]. cos ωt

Расположение узлов и брюшков

Результирующая волна имеет амплитуду Aр = 2Asen kx, который зависит от положения частицы. Тогда в точках, для которых sin kx = 0, амплитуда волны обращается в нуль, т. Е. Отсутствует вибрация.

Поскольку k = 2 π / λ:

(2 π / λ) x = π, 2π, 3π…

х = λ / 2, λ, 3λ / 2 .

В таких местах происходит деструктивная интерференция, которая называется узлы. Они разделены расстоянием, равным λ / 2, как следует из предыдущего результата.

А между двумя последовательными узлами находятся пучности или животы, в котором амплитуда волны максимальна, так как там происходит конструктивная интерференция. Они возникают при:

kx = ± π / 2, 3π / 2, 5π / 2…

Снова k = 2 π / λ и тогда:

x = λ / 4, 3λ / 4, 5λ / 4,…

Нормальные режимы на струне

Граничные условия в струне определяют, каковы длины волн и частоты. Если струна длины L закреплена на обоих концах, она не может вибрировать ни на какой частоте, потому что точки, в которых закреплена струна, уже являются узлами.

Кроме того, расстояние между соседними узлами составляет λ / 2, а между узлом и животом λ / 4, таким образом, только для определенных длин волн создаются стационарные волны: те, в которых целое число n из λ / 2 помещается в из:

(λ / 2) = L, где n = 1, 2, 3, 4….

Гармоники

Различные значения, которые принимает λ, называются гармоники. Таким образом, мы имеем:

-Первая гармоника: λ = 2L

-Вторая гармоника: λ = L

-Третья гармоника: λ = 2 L / 3

-Четвертая гармоника: λ = L / 2

Скорость и частота

Хотя кажется, что стоячая волна не движется, уравнение остается в силе:

Теперь можно показать, что скорость, с которой волна распространяется в струне, зависит от натяжения T в ней и ее линейной плотности массы μ (массы на единицу длины) как:

Характеристики стоячих волн

-Когда волны неподвижны, результирующая волна не распространяется так же, как ее компоненты, которые переходят из одной стороны в другую. Есть точки, где y = 0, потому что нет вибрации: узлы, другими словами, амплитуда Aр он становится нулевым.

-Математическое выражение стоячей волны состоит из произведения пространственной части (которая зависит от координаты x или пространственных координат) и временной части.

-Между узлами результирующая черная волна колеблется в одном месте, в то время как волны, которые переходят из одной стороны в другую, не совпадают по фазе там.

-Энергия не переносится точно в узлах, так как она пропорциональна квадрату амплитуды, но задерживается между узлами.

-Расстояние между соседними узлами составляет половину длины волны.

-Точки, в которых закреплена веревка, также считаются узлами.

Типы

Стоячие волны в одном измерении

Волны в неподвижной струне — это примеры стоячих волн в одном измерении, математическое описание которых мы предложили в предыдущих разделах.

Стоячие волны в двух и трех измерениях

Стоячие волны также могут быть представлены в двух и трех измерениях, поскольку их математическое описание немного сложнее.

Примеры стоячих волн

Фиксированные веревки

— Фиксированный трос на одном конце, который колеблется вручную или с помощью поршня на другом, генерирует стоячие волны по всей своей длине.

Музыкальные инструменты

-При игре на струнных инструментах, таких как гитара, арфа, скрипка и фортепиано, также возникают стоячие волны, так как струны имеют разное натяжение и закреплены на обоих концах.

Стоячие волны также создаются в трубках с воздухом, например в органах.

Здания и мосты

Стоячие волны возникают в таких конструкциях, как мосты и здания. Примечательным случаем стал подвесной мост Tacoma Narrows около города Сиэтл, США. Вскоре после открытия в 1940 году этот мост рухнул из-за стоячих волн, созданных ветром внутри.

Частота ветра была соединена с собственной частотой моста, создавая в нем стоячие волны, амплитуда которых увеличивалась, пока мост не рухнул. Это явление известно как резонанс.

Сейш

В портах есть очень любопытное явление под названием сейша, в котором морские волны производят большие колебания. Это связано с тем, что воды в порту довольно замкнутые, хотя океанические воды время от времени проникают через вход в порт.

Воды порта движутся со своей частотой, как и воды океана. Если обе воды равны по своим частотам, большая стоячая волна создается резонансом, как это произошло с мостом Такома.

В сейши Они также могут встречаться в озерах, водохранилищах, бассейнах и других водоемах с ограниченной поверхностью.

Аквариумы

Стоячие волны могут возникать в аквариуме, который несет человек, если частота, с которой человек ходит, равна частоте колебаний воды.

Упражнение решено

Струна гитары имеет L = 0,9 м и линейную массовую плотность μ = 0,005 кг / м. Он подвергается натяжению 72 Н, и его режим колебаний соответствует показанному на рисунке, с амплитудой 2А = 0,5 см.

а) Скорость распространения

б) Частота волны

в) Соответствующее уравнение стоячей волны.

Решение для

v = [72 Н / (0,005 кг / м)] 1/2 = 120 м / с.

Решение б

Расстояние между двумя соседними узлами λ / 2, поэтому:

(2/3) L — (1/3) L = λ / 2

λ = 2L / 3 = 2 x 0,90 м / 3 = 0,60 м.

Поскольку v = λ.f

f = (120 м / с) / 0,60 м = 200 с -1 = 200 Гц.

Решение c

Yр = [2A sin kx]. cos ωt

Нам нужно подставить значения:

k = 2π / λ = k = 2π / 0,60 м = 10 π / 3

ω = 2π x 200 Гц = 400 π Гц.

Амплитуда 2А уже дается выражением:

2А = 0,5 см = 5 х 10 -3 м.

Yр = 5 х 10 -3 м. грех [(10π / 3) х]. cos (400πt) =

= 0,5 см. грех [(10π / 3) х]. cos (400πt)

Ссылки

  1. Бауэр, В. 2011. Физика для инженерии и науки. Том 1. Мак Гроу Хилл.
  2. Фигероа, Д. (2005). Серия: Физика для науки и техники. Том 7. Волны и квантовая физика. Отредактировал Дуглас Фигероа (USB).
  3. Джанколи, Д. 2006. Физика: принципы с приложениями. 6-е. Эд Прентис Холл.
  4. Сервей, Р., Джуэтт, Дж. (2008). Физика для науки и техники. Том 1. 7-е. Под ред. Cengage Learning.
  5. Типлер П. (2006) Физика для науки и техники. 5-е изд., Том 1. От редакции Reverté.
  6. Википедия. Seiche. Получено с: es.wikipedia.org.

Неверность: причины и последствия

Суксидин: применение и побочные эффекты этого препарата

Уроки по электрическим цепям — линии передачи, часть 2

Эта статья — перевод. Начало здесь.
Источник.

В программе:
1) Провода болтаются в воздухе, но источник тока/напряжения видит короткое замыкание.
2) На одном конце провода амплитуда равна 0 Вольт, а на другом — 1 Вольт. Как это возможно?
3) Согласование 75 Ом источника сигнала с 300 Ом нагрузкой при помощи правильно подобранного кабеля.

Стоячие волны и резонанс

Всегда, когда есть несоотвествие между сопротивлением линии передачи и нагрузкой, происходит отражение. Если падающий сигнал имеет одну частоту, то этот сигнал будет накладываться на отражённые волны, и возникнет стоячая волна.

На рисунке показано, как треугольная падающая волна зеркально отражается от открытого конца линии. Для простоты, линия передачи в этом примере показана как единая жирная линия, а не как пара проводов. Падающая волна идёт слева направо, а отражённая – справа налево.


Если мы сложим эти два сигнала, то увидим что третий, стационарный сигнал, создаётся по всей длине линии: красная линия на рисунке ниже – сумма падающей и отражённой волн:

Эта третья волна является суммой падающей и отражённой волны. Она не распространяется по кабелю, как падающая или отражённая волна. Обратите внимание на точки вдоль линии, где падающая и отражённая волна всегда гасят друг друга: эти точки никогда не меняют позицию.

Стоячие волны распространены и в физическом мире. Рассмотрим верёвку, привязанную за один конец, и потрясём её:

Узлы (с точками где нет вибрации) и пучности (точки максимальной вибрации) остаются неизменными по всей длине верёвки. Струнные инструменты также создают стоячую волну, с узлами максимальной и минимальной вибрации вдоль их длины. Основное отличие между верёвкой и струнным инструментом в том, что инструмент уже настроен на правильную частоту вибрации:

Ветер, дующий через открытые трубы, также производит стоячие волны. В этом случае, колеблются молекулы воздуха в трубе, а не твёрдое тело. Стоячая волна может заканчиваться в узле (минимальная амплитуда) или в пучности(максимальная амплитуда) и это зависит от того, открыт или закрыт другой конец трубки:

Закрытый конец трубы создаёт узел, а открытый – пучность. По аналогии, якорь струны – это узел, а свободный конец (если он есть) – пучность.

Обратите внимание, что внутри трубы могут возникать стоячие волны разных частот. Есть несколько резонансных частот для любой системы, поддерживающей стоячие волны.

Более высокие частоты должны быть кратны базовой частоте.

Фактические частоты для любой из этих гармоник (обертонов) зависят от физического размера трубы и скорости распространения волн (в данном случае — скорости распространения звука).

В линиях связи также возможно создать стоячие волны, и их частота будет зависеть от типа нагрузки на конце линии, от скорости распространения и физической длины. Резонанс в линиях передачи более сложен, чем резонанс струн или воздуха в трубах, потому что мы должны учитывать напряжение и ток волн.

Резонанс в линиях передачи легче понять, используя компьютерное моделирование. Для начала, рассмотрим согласованную линию на 75 Ом:

Используя SPICE для имитации схемы, мы укажем для линии T1 волновое сопротивление 75 Ом(z0 = 75) и задержку распространения 1 мкс. Это удобный способ для выражения физической длины линии передачи – количество времени на распространение сигнала. Для реального кабеля RG-59B/U это будет длина 198 метров. 1 мкс соответствует частоте 1МГц. Я буду выбирать частоты от нуля до этой частоты, чтобы показать, как система реагирует на разные частоты.
Вот SPICE модель:

Transmission line
v1 1 0 ac 1 sin
rsource 1 2 75
t1 2 0 3 0 z0=75 td=1u
rload 3 0 75
.ac lin 101 1m 1meg
* Using «Nutmeg» program to plot analysis
.end

Выполним это моделирование и построим график падения напряжения на сопротивлении источника (Zsource) – это будет индикатор тока, и график напряжения на конце линии (напряжение на нагрузке). Мы увидим, что источник напряжения – на графике показано как vm(1) (величина напряжения между узлом 1 и точкой заземления 0) ровно 1 Вольт. Напряжения в точке 2 и 3 будут 0,5Вольт. Напряжение на резисторе – как индикатор тока – будет 0,5 Вольт:

В системе, где все сопротивления идеально согласованы, не может быть никаких стоячих волн, и нет резонансов на графике Боде.
Теперь давайте изменим сопротивление на 999 МОм, чтобы имитировать открытую линию передачи. Мы определённо должны получить отражённые волны на каких то частотах, от 1мГц до 1МГц:

Transmission line
v1 1 0 ac 1 sin
rsource 1 2 75
t1 2 0 3 0 z0=75 td=1u
rload 3 0 999meg
.ac lin 101 1m 1meg
* Using «Nutmeg» program to plot analysis
.end

Здесь напряжение питания линии vm(1) и напряжение на нагрузке остаются на прежнем уровне – 1Вольт. Другие падения напряжения зависят от частоты(так же от 1мГц до 1 МГц). Есть пять примечательных частот вдоль горизонтальной линии: 0Гц, 250кГц, 500кГц, 750кГц, 1МГц. Изучим каждую точку с учётом напряжения и тока в различных точках схемы.

• 0Гц (на самом деле 1мГц) – сигнал практически постоянного тока, и цепь ведёт себя так же, как если бы было подано 1Вольт постоянного тока. Ток не течёт, так как указано нулевое падение напряжения на резисторе Zsource, график vm(1,2), и напряжение на источнике равно напряжение в конце линии vm(2) (напряжение между точкой 2 и точкой 0).

• На 250кГц мы видим нулевое напряжение в точке 2, максимальный ток от источника и полное напряжение на конце линии.

Вы можете быть удивлены, как это может быть? Как мы можем получить полное напряжение на открытом конце линии, если на входе нулевое напряжение? Ответ можно найти в парадоксе стоячей волны. На частоте 250кГц длина линии точно равна ¼ длины волны. Так как конец линии разомкнут, то не может быть никакого тока, но напряжение – будет. Таким образом, на конце провода будет узел для тока (ток равен нулю) и пучность для напряжения(максимальная амплитуда):

• На частоте 500кГц в линию укладывается ровно половина волны, и здесь мы видим ещё одну точку в которой ток равен нулю, а напряжение вновь имеет полную амплитуду:

• На частоте 750 кГц картина похожа на частоту 250кГц: напряжение на источнике равно нулю, и максимальный ток. ¾ волны укладывается в линии, в результате чего источник видит короткое замыкание в точке подключения к линии передачи даже не смотря на то, что на другом конце линии обрыв:

• Когда частота доходит до 1МГц, в линии укладывается один полный период волны. На данный момент, и ток, и напряжение в начале линии равны таковым в конце линии. И если в конце линии ток равен нулю (сопротивление равно 999 МОм), то и в начале линии ток тоже равен нулю. Напряжение на источнике равно напряжению на нагрузке. Фактически, источник видит разомкнутую цепь.

Аналогично короткое замыкание на конце линии генерирует стоячие волны, хотя узлы и пучности по току и напряжению меняются местами: На короткозамкнутом конце линии не будет напряжения (узел), но будет максимальный ток (пучность). Далее идёт моделирование SPICE и иллюстрации того, что происходит на всех интересных частотах: 0Гц, 250 кГц, 500кГц, 750кГц, 1 МГц. Короткое замыкание моделируется сопротивлением нагрузки 0 мкОм.

Transmission line
v1 1 0 ac 1 sin
rsource 1 2 75
t1 2 0 3 0 z0=75 td=1u
rload 3 0 1u
.ac lin 101 1m 1meg
* Using «Nutmeg» program to plot analysis
.end






В обоих примерах(разомкнутая и короткозамкнутая линия) отражается вся энергия. 100 процентов падающей волны достигает конца линии и отражается обратно к источнику. Если, однако, линия передачи нагружена каким-то сопротивлением, будет разница между максимальными и минимальными значениями напряжения и тока вдоль линии.

Предположим, что мы нагрузили линию резистором 100 Ом вместо 75:

Построим модель для этого случая:

Transmission line
v1 1 0 ac 1 sin
rsource 1 2 75
t1 2 0 3 0 z0=75 td=1u
rload 3 0 100
.ac lin 101 1m 1meg
* Using «Nutmeg» program to plot analysis
.end

Если мы запустим другой SPICE анализ с выводом текстовых значений вместо графика мы можем обнаружить, что все интересные частоты остались теми же самими (Постоянный ток, 250кГц, 500кГц, 750кГц, и 1МГц):

Transmission line
v1 1 0 ac 1 sin
rsource 1 2 75
t1 2 0 3 0 z0=75 td=1u
rload 3 0 100
.ac lin 5 1m 1meg
.print ac v(1,2) v(1) v(2) v(3)
.end
freqv(1,2)v(1)v(2)v(3)
1.000E-034.286E-011.000E+005.714E-015.714E-01
2.500E+055.714E-011.000E+004.286E-015.714E-01
5.000E+054.286E-011.000E+005.714E-015.714E-01
7.500E+055.714E-011.000E+004.286E-015.714E-01
1.000E+064.286E-011.000E+005.714E-015.714E-01

На всех частотах напряжение на источнике в точке 1 равно 1Вольт, как и положено. Напряжение на нагрузке также остаётся постоянным, но имеет меньшую амплитуду (0,5714 Вольт). Однако, напряжение питания линии (точка 2, график v(2)) и ток (график v(1,2)) указывает, что ток от источника меняется в зависимости от частоты.




На нечётных гармониках основной частоты(250кГц и 750кГц) мы видим разные уровни напряжения в начале и конце линии, поскольку на этих частотах стоячие волны создают узел с одной стороны линии и пучность – с другой. В отличие от разомкнутой и короткозамкнутой линии, максимальные значения не достигают ни нуля, ни 100% от исходного сигнала. Но мы всё так же имеем точки с минимумом и максимумом напряжения. То же самое справедливо и для тока. Если нагрузочное сопротивление линии не соответствует волновому сопротивлению линии, мы будем иметь точки максимального и минимального тока на некоторых фиксированных точках линии передачи, соответствующие узлам и пучностям.

Один из способов выражения уровня стоячих волн – отношение максимальной амплитуды (в точке пучности) к минимальной амплитуде для напряжения или тока. Это отношение называется КСВ – коэффициент стоячей волны. Если на линии обрыв или короткое замыкание, то КСВ равен бесконечности, так как минимальная амплитуда будет равна нулю. В примере 75 Ом линии с нагрузкой 100 Ом КСВ будет равен 1,333: максимальное напряжение линии на 250 или 750кГц(0,5714 В) делённое на минимальное напряжение линии (0,4286 В).

КСВ также можно рассчитать, зная нагрузочное сопротивление и волновое сопротивление линии, делением большего значения на меньшее. В нашем примере 100Ω /75Ω = 1,333.

Линия с идеально согласованной нагрузкой будет иметь КСВ равный 1. Это считается идеалом не только из-за того, что отражённые волны – это энергия не достигшая нагрузки, но из-за высоких значений напряжения и тока: высокое напряжение может создать пробой в изоляции, а высокий ток повредить проводники.

Также, линия с плохим КСВ выступает в качестве антенны. Это нежелательно: такая антенна может навести помехи на близлежащие провода. Интересно, что антенны – это открытые линии передач, и работают они при КСВ как можно ближе к 1. Это значит, что вся энергия излучается.

Следующая фотография показывает точку соединения в линии связи радиопередатчика. Большие медные трубы с керамическим изолятором представляют из себя жёсткую коаксиальную линию с волновым сопротивлением 50 Ом.

Гибкий коаксиальный кабель с волновым сопротивлением 50 Ом. Белая пластиковая труба соединяет газ внутри труб: они запечатаны для защиты от влаги. Обратите внимание на плоские провода для соединения линий. Почему они не круглые? Это сделано из-за скин-эффекта, который делает бесполезной большую площадь поперечного сечения на больших частотах.

Как и многие линии связи, они работают на низком КСВ. Как мы увидим в следующем разделе, явление стоячих волн в линиях связи не всегда вредны, так как они могут быть использованы для полезной функции: преобразования импеданса.

Преобразование импеданса

Стоячие волны в резонансных точках короткозамкнутых или открытых линиях могут производить необычные эффекты. При длине линии ½ длины волны (и в кратное число раз больше) источник видит нагрузку как есть. На следующих иллюстрациях это показано:


В обоих случаях на концах линии пучность для напряжения и узел для тока. Линия имитирует нагрузку – бесконечное сопротивление, источник видит обрыв.
То же верно, если на линии короткое замыкание: в точке подключения источника будет минимум напряжения и максимум тока.


Однако, если длина линии равна четверти длины волны, источник при коротком замыкании на конце линии увидит обрыв, а оборванную линию будет видеть как короткозамкнутую.

Линия разомкнута, а источник видит короткое замыкание:


Линия замкнута, а источник видит обрыв:

На этих частотах линия передачи ведёт себя как трансформатор сопротивления, превращая бесконечное сопротивление в нуль и наоборот. Это происходит только в резонансных точках, когда в линию укладывается четверть волны и кратно больше(3/4, 5/4, 7/4, 9/4 …), но если частота известна и неизменна, то это явление может быть использовано для согласования разных волновых сопротивлений друг с другом.
Возьмём в качестве примера линию передачи 75Ω с нагрузкой 100Ω. Из численного моделирования SPICE определим какое сопротивление видит источник:




Простое уравнение связывает волновое сопротивление линии(Z0), импеданс нагрузки(Zload) и входной импеданс(Zinput) для несогласованной линии на нечётной гармоники:

Рассмотрим практический пример, когда надо согласовать нагрузку 300Ω и источник 75Ω. Всё, что нам нужно сделать, так это вычислить правильное волновое сопротивление линии и длину для четверти длины волны на 50МГц.
Во-первых, рассчитаем сопротивление линии. Z0 = Sqrt(75*300) = 150Ω.

Во-вторых, надо рассчитать длину линии. Предположим, коэффициент укорочения 0,85, скорость света 300 тысяч км/сек, скорость сигнала будет 255 тысяч км/сек. Делим эту скорость на частоту сигнала и получаем длину волны 5,1 метр. Нам нужно четверть длину волны – это будет 1,275м.

Вот схема для SPICE анализа:

Мы можем указать длину линии по задержке сигнала. При частоте 50МГц период будет 20нс. Время задержки на четверть длины волны будет 5нс.

Transmission line
v1 1 0 ac 1 sin
rsource 1 2 75
t1 2 0 3 0 z0=150 td=5n
rload 3 0 300
.ac lin 1 50meg 50meg
.print ac v(1,2) v(1) v(2) v(3)
.end
freqv(1,2)v(1)v(2)v(3)
5.000E+075.000E-011.000E+005.000E-011.000E+00

На частоте 50МГц в точке 1-2 падает ровно половина – 0,5В, а вторая половина напряжения падает на линии связи в цепи 2-0. Это означает, что источник видит в нагрузке 75Ω. Нагрузка, однако, получает не половину, а 1 Вольт (напряжение v(3)). На сопротивлении 75Ω падает 0,5В или 3,333мВт – столько же, сколько и на нагрузке 300 Ом при напряжении 1В. В соответствии с теоремой максимальной мощности (теоремой Якоби) на нагрузке рассеивается максимальная возможная мощность. Линия передачи длиной в четверть волны, волновым сопротивлением 150Ω и нагрузкой 300Ω ведёт себя как 75Ωнагрузка.

Конечно, это всё будет работать лишь на 50МГц и нечётных гармониках. Для других частот линию передачи придётся удлинять или укорачивать.

Как ни странно, линия той же длины будет согласовывать 300Ω источник и 75Ω нагрузку. Это показывает, что явление преобразования импеданса в корне отличается от принципа работы трансформатора с двумя обмотками.

Transmission line
v1 1 0 ac 1 sin
rsource 1 2 300
t1 2 0 3 0 z0=150 td=5n
rload 3 0 75
.ac lin 1 50meg 50meg
.print ac v(1,2) v(1) v(2) v(3)
.end

freqv(1,2)v(1)v(2)v(3)
5.000E+075.000E-011.000E+005.000E-012.500E-01

В этом случае на внутреннем сопротивлении источника упадёт 0,5В, или 833мкВт. На нагрузке будет 0,25В – те же 833мкВт.

Этот метод часто используется для согласования линий передачи и антенны в радиопередачиках, так как там частота часто известна и неизменна. Минимальная длина преобразователь импеданса соответствует ¼ длины волны.

Стоячие волны на струне

Изучите процесс формирования стоячей волны в струне: определение стоячей волны и частота, конструктивные и деструктивные помехи, особенности колебания в струне.

Стоячая волна образуется из-за помех при отражении поперечных волн в струнах.

Задача обучения

  • Определить, когда формируется стоячая волна.

Основные пункты

  • Отраженная волна инвертируется от падающей, когда поперечная на струне закрепляется в финальной точке. Отраженная не инвертируется от падающей, если поперечная в финальной точке свободна.
  • Стоячая волна возникает, если падающая встречает отраженную на струне.
  • В стоячей волне есть узлы и пучности.
  • Каждая точка колеблется вверх и вниз, а амплитуда зависит от их расположения.
  • Некоторые точки остаются плоскими из-за деструктивных помех – пучности.
  • Точки с максимальным колебанием возникают из конструктивных помех – узлы.

Термины

  • Поперечная волна – направление возмущения выступает перпендикулярным стороне перемещения.
  • Деструктивные помехи – волны мешают друг другу, а точки не совпадают.
  • Конструктивные помехи – волны мешают друг другу, но точки совпадают по фазам.

Пример

Вспомните о принципе функционирования гитары. При нажатии на струну, она начинает вибрировать. Это очень маленькая стоячая волна, чья частота остается практически постоянной. Частота характеризует высоту тона, так что звук – постоянная нота. Это основа для любого струнного инструмента.

Стоячей именуют кажущуюся неподвижную волну. То есть, она остается в стабильном положении. В струне это тип поперечной волны, где перемещение частичек среды выступает перпендикулярным направлению волнового распространения. Возникает, если две одинаковых волны, перемещающихся в разных направлениях, начинают друг другу мешать.

В случае со струнами возникает два сценария для волн: струна фиксируется на обоих концах или она фиксируется на одном и остается свободной на другом. Поперечная будет смещаться вдоль струны до тех пор, пока не достигнет второго конца. Потом она отражается и возвращается в исходное положение. Именно на этом этапе создаются помехи.

Волна отражается, но не инвертируется, как это делает поперечная волна с неподвижным концом

Поперечная волна отражается и инвертируется при сталкивании с фиксированным концом

Стоячие волны

В момент одного из этих сценариев падающая волна встречает отраженную. Они перемещаются в противоположные стороны, приводя к помехам. Если обладают одной частотой, то создают стоячую волну. Кажется, будто она лишена движений.

Если бы замедлили стоячую волну, то она приняла б такой вид. Она создана падающей волной на отраженной. Затем возвращается в том же направлении, в котором следовала ранее. Две волны сталкиваются и мешают друг другу

Конструктивные и деструктивные помехи

При встрече падающей и отраженной волн, амплитуда обоих достигает 0. По мере движения друг против друга, они создают два вида помех. Если полностью пребывают в фазе и контактируют конструктивно, то усиливаются, а при несоответствии фазе и деструктивном взаимодействии – уменьшаются. Так и формируется стоячая волна. Каждая точка среды со стоячей волной проходит сквозь колебания вверх и вниз, а амплитуда основывается на позициях этих точек. В итоге:

  • Точки с максимальной высотой колебаний – пучности. Возникают при полной конструктивной помехе.
  • Точки в стоячей воде, кажущиеся плоскими и неподвижными, – узлы. Относятся к деструктивным помехам.


источники:

http://habr.com/ru/post/183580/

http://v-kosmose.com/fizika/stoyachie-volnyi-na-strune/