Уравнение струны задача 11 класс

Разностный метод для уравнения колебаний

8.1. Разностный метод для уравнения колебаний

8.1.1. Уравнение колебаний струны. Явная схема

Рассмотрим задачу о малых колебаниях натянутой струны с распределенной по длине нагрузкой f(x, t) (см. рис. 8.1):

(8.11)

(8.12)

(8.13)

Струна совершает плоские колебания, т. е. точки струны перемещаются параллельно плоскости t = 0.

Функция u(x, t) выражает смещение точки x струны в момент времени t от прямолинейной формы.

Начальные условия (8.12) означают следующее. Форма струны в начальный момент времени t = 0 выражается функцией μ(x). Скорость перемещения точки x струны в момент времени t = 0 равна значению функции μ0(x).

Краевые условия (8.13) говорят о том, что левый конец струны с течением времени совершает смещение μ1(t), а правый конец — смещение μ2(t).

Если концы струны закреплены, то μ1(t) = μ2(t) = 0.

Мы предполагаем, что начальные условия (8.12) и краевые условия (8.13) должны быть согласованы между собой в угловых точках, т. е. выполнены условия .

На рис. 8.1 представлен случай, когда , .

Введем сеточную область (рис.8.2, a)). В прямоугольной области зададим точки:

(8.14)

Рассмотрим уравнение (8.11) в точках , , , и заменим производные разностными формулами

, (8.15)

Обозначим через приближенные значения искомой функции в точках . Тогда из уравнения (8.11) получим разностное уравнение (разностную схему), которое аппроксимирует уравнение (8.11) с порядком O(h2 + τ2):

(8.16)

На рис. 8.2 b) изображен шаблон «крест» разностного уравнения (8.16). Разностное уравнение (8.16) связывает значения неизвестной функции на трех слоях (k – 1, k, k + 1).

На слое k = 0 заданы начальные условия (8.12), из которых следует, что

. (8.17)

Чтобы найти значения неизвестной функции на слое k = 1, используем условие для производной ut(x, 0) из (8.12). Для этого построим разложение в ряд Тейлора

. (8.18)

Из уравнения (8.11), учитывая первое условие в (8.12), выразим вторую производную

. (8.19)

Теперь, учитывая условие в (8.12), из (8.18), (8.19) выводим формулу для вычисления значений функции на первом слое:

. (8.20)

С учетом (8.13), окончательно получим для приближенных значений искомой функции на первом слое формулы

. (8.21)

Учитывая граничные условия (8.13) из (8.16) выводим формулы для вычисления значений на слоях :

(8.22)

Мы получили явные формулы (8.17), (8.21), (8.22) решения разностной задачи.

Разностная схема называется устойчивой, если она имеет единственное решение и малым изменениям исходных данных отвечают малые изменения решения.

Приведем без доказательства (доказательство можно найти в [9]) следующий факт: для выполнения условия устойчивости разностной схемы (8.16) необходимо и достаточно, чтобы выполнялось условие Куранта cτ 0 находим методом прогонки, последовательными вычислениями в несколько этапов.

2.1. Вычислим правые части (8.26):

(8.29)

2.2. Вычислим прогоночные коэффициенты:

(8.30)

(8.31)

(8.32)

2.3. Вычислим решение ui,k+1:

(8.33)

(8.34)

Отметим преимущества неявной схемы перед явной схемой:

В явной схеме надо выбирать шаги h и τ так, чтобы выполнялось условие устойчивости (условие Куранта) cτ

Электронная библиотека

Здесь мы покажем, как применяются ряды Фурье при решении задачи о колебании струны. Под струной мы понимаем тонкую гибкую нить, не оказывающую сопротивления изгибу.

Рассмотрим струну, которая в начальный момент совмещена с отрезком оси Ох. Будем считать, что концы х = 0 и x = l закреплены на оси Ох. Пусть струна растягивается силами и , приложенными к её концам и направленными вдоль оси Ох. Если струну вывести из состояния равновесия и затем предоставить самой себе, под влиянием растягивающих сил точки струны придут в движение, стремясь вернуться в исходное положение. Придя в это положение, каждая точка струны будет обладать уже некоторой скоростью и по инерции пройдет дальше своего равновесного положения. При этом дальнейшем движении точек они будут тормозиться растягивающими силами и т.д. Таким образом, струна станет совершать некоторое колебательное движение. Задача состоит в исследовании этого движения.

Сделаем ряд предположений. Во-первых, считаем, что, выводя струну из состояния равновесия, мы придаем ей форму некоторой линии. Поскольку концы струны закреплены на оси Ох, то на функцию U(x) линии надо наложить требования U(0) = U(l) = 0. Во-вторых, будем предполагать, что каждая точка струны совершает только поперечные колебания, перпендикулярные оси Ох. В-третьих, колебания предположим малыми, что квадратами отклонений точек струны от оси Ох можно пренебречь. Кроме того, будем считать, что во все время движения струна будет сохранять пологую (гладкую) форму, это значит, что угол , образуемый касательной к струне с осью Ох, мал, чтобы можно было считать . Наконец, считаем струну однородной, причем массу единицы длины струны в её нерастянутом состоянии считать равной её плотности .

Возьмем какую-либо точку струны, имевшую в начальный момент t = 0 абсциссу х. Так как эта точка будет двигаться перпендикулярно оси Ох, то во время движения её абсцисса х не будет меняться. Ордината её у будет зависеть от времени, а также от того, о какой точке идет речь, а именно от абсциссы х этой точки, т.е. ордината будет функцией от х и t. Эту функцию в дальнейшем будем обозначать через U(x, t). Ясно, что она должна удовлетворять граничным условиям:

и начальным условиям:

первое из (4.10) выражает, что струне придана форма, а второе означает, что точки струны имеют начальные скорости (мы, предположим, что ).

Переведем физическую задачу на язык математики, т.е. выведем дифференциальное уравнение, которому должна удовлетворять искомая функция U(x,t). Для этого выделим на струне элементарный участок, который при t = 0 совпадает с отрезком [x,x+dx] оси Ох. В момент t это будет дуга линии U(x ,t). Длина этой дуги:

пренебрегая (мы сделали допущение, что ), получим: ds = dx (т.е. струна не растягивается). Масса выделенного участка равна: . К этому элементу будут приложены растягивающие его силы. Пусть натяжение в точке х будет равно . Тогда к концам нашего элемента будут приложены силы и .

Они направлены по касательным в этих точках. Обозначим через и соответствующие углы в точках струны (рис. 4.1). Обозначим равнодействующую сил, приложенных к концам элемента, через , а ускорение элемента через . Тогда векторное уравнение движения элемента имеет вид:

Спроектируем это уравнение на ось Ох, находим:

( означает проекцию силы на ось Ох, а – численные значения натяжения в точке, абсцисса которой х).

Поскольку точки струны движутся перпендикулярно оси Ох, то , стало быть . Но

так как . Сопоставляя это с равенством , находим, что . Это значит, что величина натяжения не меняется вдоль струны. Но, так как на концах струны это натяжение есть , вместо Fx, Fx=dx будем писать: .

Спроектируем уравнение (4/11) на ось Оу:

Так как , а то (4.13) дает:

Тогда уравнение будет иметь вид:

где . Уравнение (4.14) называется уравнением свободных колебаний струны или волновым уравнением.

Таким образом, механическая задача свелась к чисто математической (получили математическую модель процесса колебания струны): найти такое решение уравнения (4.14), которое удовлетворяет начальным и граничным условиям (4.9) и (4.10). Существуют разные способы решить эту задачу. Один из способов был предложен в XYIII веке Д. Бернулли. Позже, уже в XIX веке, этот способ систематически применялся Фурье для решения целого ряда термодинамических задач, почему он и получил название метода Фурье. Этот способ мы рассмотрим далее. Он требует сначала решения одной важной задачи, которая носит название задачи о собственных значениях и собственных функциях. Однако решим одну вспомогательную задачу: найти функцию U = U(x, t), удовлетворяющую требованиям:

Отличие этой задачи от той, которую нам надо решить, состоит в том, что от искомой функции U(x ,t) мы не требуем, чтобы она удовлетворяла начальным условиям где , но зато требуем, чтобы она имела специальный вид X(x)T(t) и была отличной от тождественного нуля.

Измененная задача решается довольно просто и имеет бесконечное множество решений, из которых удается составить и решение нашей основной задачи.

Итак, пусть имеем первое условие (4.15).

Из него вытекает, существование такой точки , что . Тогда , т.е. . Подставим в граничные условия:

Отсюда видно, что искомая функция X(x) должна удовлетворять условиям:

Подставляя из четвертого условия (4.15.) во второе, получим:

Обратим внимание, на то, что правая часть (4.15) не зависит от . Следовательно, и левая часть от не должна зависеть. С другой стороны, эта левая часть может быть функцией только одного , ибо . Значит, левая (и правая) часть равенства должна быть постоянной величиной. Обозначим ее (пока неизвестную) через .

Допустим, что . Тогда из (4.17) следует . Отсюда и , т.е. должна быть линейной функцией. Подставляя в X(0 )= X(l) = 0, получим:

т.е. , а с ним и , что противоречит допущению первому из (4.15). Таким образом, не существует решения вспомогательной задачи для .

Допустим, что , т.е. , где можно считать положительным. Тогда

Общее решение этого уравнения имеет вид:

Решая эту систему, находим . Это приводит к , что противоречит первому условию (4.15). Итак, неравенство невозможно.

Пусть , т.е. , где . Тогда

Решив это уравнение, получим:

Граничные условия дают: . Заменяя на С, имеем , а второе условие дает . Это возможно лишь при . Значит, для возможны значения , что приводит к следующим выражениям для :

причем при каждом может принять любое (отличное от 0) значение. Заметим, что здесь решена задача о собственных значениях и собственных функциях. Поэтому числа и функции называются соответственно: собственными числами, а функции собственными функциями, которые соответствуют собственным числам (значениям).

Выбрав возможное значение , и подставив в (4/17), получим:

где А и В – произвольные постоянные. Обозначая Т буквой Тn и полагая , , получаем бесконечное множество решений вспомогательной задачи:

Отметим, что наше уравнение и условия линейны и однородны, т.е. такие, что сумма функций , которая удовлетворяет им, также будет решением. Поэтому функция

при условии сходимости ряда также будет решением. Чтобы функция (4.22) была решением исходной задачи надо подобрать и так, чтобы выполнялись начальные условия (4.10).

Первое условие с (4.10) дает:

Дифференцируя (4.22), получим:

Чтобы удовлетворить соотношению (4.24), надо положить . Соотношение (4.23) говорит, что коэффициенты должны равняться коэффициентам разложения функции , заданной на [0,l], по функциям в ряд Фурье. Поэтому

Таким образом, искомое решение имеет вид

где определяется по (4.25).

1) Полученное решение носит формальный характер, так как мы не исследовали сходимость ряда (4.26). Однако можно показать, что если функция гладкая на [0,l], то ряд сходится и его сумма U(x,t) удовлетворяет исходному уравнению и начальным и краевым условиям.

2) Примененный метод решения задачи обычно называют методом Фурье или методом разделения переменных или методом собственных функций.

Решение (4.22) с учётом , можно записать в виде:

Каждый член этого ряда представляет собой так называемую стоячую волну, при которой точки струны совершают гармоническое колебательное движение с одинаковой фазой , с амплитудой и частотой .

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Уравнение струны задача 11 класс

А. А. Гусак. Высшая математика. Том 2.
Глава 27. Простейшие дифференциальные уравнения математической физики

В этой главе рассматриваются некоторые уравнения математической физики, т.е. уравнения с частными производными второго порядка, к которым приводят следующие задачи: задача о колебаниях струны, задача о распространении тепла и др.

27.1. Вывод уравнения колебаний струны

Рассмотрим туго натянутую струну, закрепленную на концах. Выведем струну из положения равновесия (оттянув ее или ударив по ней), струна начнет колебаться.

Предположим, что любая точка струны колеблется по прямой, перпендикулярной к исходному положению струны, и струна все время находится в одной и той же плоскости.

Выберем в этой плоскости декартову прямоугольную систему координат Охu. В качестве оси Ох возьмем прямую, на которой находилась струна в положении равновесия, за ось Оu примем прямую, проходящую через левый конец струны и перпендикулярно к оси Ох (рис. 27.1).

Отклонение струны от положения равновесия обозначим через u; очевидно, u зависит от абсциссы х точки струны и времени t, т.е. u = u(х, t).

При фиксированном t графиком функции u = u(х, t) в плоскости Охu является форма струны в данный момент времени t. Угловой коэффициент касательной к графику в точке с абсциссой х равен частной производной по х от функции u(х, t) т.е.

где α = α (x, t) – угол наклона касательной.

Чтобы составить представление о колебаниях струны, необходимо начертить ряд графиков функции u = u(х, t) при различных значениях t.

При фиксированном значении х функция u = u(х, t) определяет закон движения точки с абсциссой х. Эта точка движется по прямой, параллельной оси Оu. Скорость и ускорение указанного движения выражаются соответственно формулами

Будем изучать малые колебания струны, т.е. такие, при которых угол α = α (x, t) (угол наклона касательной к графику функции u = u(х, t) при каждом фиксированном значении t) настолько мал, что его квадратом можно пренебречь, т.е. приближенно считать

то отсюда следует, что

sin α = α, cos α = 1.

tg α – sin α = tg α(1 – cos α) = tg α · 0 = 0 ,

Принимая во внимание (27.3) – (27.5), заключаем, что

tg² α = 0 , или

Следовательно, длина дуги струны, ограниченной точками M1(x1, u1), M2(x2, u2) выразится формулой

Соотношение (27.7) означает, что длина любого участка струны остается постоянной.

Будем предполагать струну абсолютно гибкой, что означает следующее: если удалить участки ОМ1, M2L (см. рис. 27.1), то их действия на участок М1М2 заменяются соответственно действием сил натяжения T1 и Т2, направленных по касательным к графику функции u = u(х, t) в точках М1 и М2 (рис. 27.2). Поскольку по предположению точки струны движутся по прямым, параллельным оси Оu, то сумма проекций сил T1, Т2 на ось Ох равна нулю. Проектируя эти силы на ось Ох, получаем T2сos α2T1cos α1 = 0, где T1, Т2 – величины сил T1, Т2.

На основании второго из равенств (27.4) заключаем, что T1 = T2 т.е. величина силы натяжения остается постоянной. Обозначая ее через T, получаем

Проектируя силы T1, Т2 на ось Оu, находим

С учетом равенства (27.1) получаем

где х – абсцисса точки М1; х + Δх – абсцисса точки М2.

Применяя теорему Лагранжа о конечном приращении дифференцируемой функции, находим, что

поэтому проекция сил натяжения T1 и Т2 на ось Ох выразится формулой

Предположим, что на струну действуют также внешние силы, параллельные оси Оu, плотность распределения* которых равна g(x, t), тогда величина равнодействующей этих сил, приложенных к участку М1М2, приближенно равна g(x, t)Δx. Силами сопротивления внешней среды пренебрегаем.

* Под плотностью понимают предел средней плотности распределения сил на данном отрезке, когда длина отрезка стремится к нулю; средняя плотность – отношение величины равнодействующей сил к длине отрезка, на котором они приложены.

Будем считать струну однородной, обозначим через ρ ее линейную плотность, тогда масса участка М1М2 выразится так: ρ М1М2 = ρ Δх, m = ρ Δх

В соответствии со вторым законом Ньютона mw = F (произведение массы на ускорение равно действующей силе) получаем

Уравнение (27.10) называется уравнением колебаний струны, или одномерным волновым уравнением.

Если g(x, t) = 0 (внешние силы отсутствуют), то уравнение (27.10) принимает вид

Уравнение (27.12) называется уравнением свободных колебаний, уравнение (27.10) — уравнением вынужденных колебаний струны.

27.2. Начальные и краевые условия. Задача Коши

Чтобы из множества решений уравнения с частными производными второго порядка выбрать определенное решение, необходимо задать дополнительные условия.

Так, в случае уравнения (27.10) или (27.12) нужно указать отклонение и скорость движения в начальный момент времени t0 (будем полагать t0 = 0), т.е.

где f(x), F(x) – заданные функции, а также зафиксировать отклонения концов струны. Поскольку концы закреплены, то

где l – длина струны.

Условия (27.13) называются начальными условиями, а условия (27.14) – краевыми (или граничными) условиями.

Итак, задача о свободных колебаниях струны ставится следующим образом. Найти решение u = u(х, t) линейного однородного уравнения с частными производными второго порядка , удовлетворяющее начальным условиям u(х, 0) = f(x), u'(х,0) = F(x) и краевым условиям u(0, t) = 0, u(l, t) = 0.

Функции f(х) и F(x) определены на отрезке [0, l], из краевых условий следует, что f(0) = 0, f(l) = 0. Можно доказать, что при некоторых предположениях относительно функций f(x) и F(x) поставленная задача имеет единственное решение.

В случае, когда предполагается, что струна является неограниченной, граничные условия не налагаются.

Задача о свободных колебаниях неограниченной струны ставится так. Найти решение u = u(х, t) уравнения с частными производными второго порядка , удовлетворяющее начальным условиям

где f(x) и F(x) – заданные функции, определенные на всей действительной оси. Эта задача называется задачей Коши.

27.3. Задача о свободных колебаниях бесконечной струны. Метод Д’Аламбера

Как уже отмечалось, задача о свободных колебаниях бесконечной струны, или задача Коши, состоит в следующем.

Найти решение u = u(х, t) линейного однородного уравнения

удовлетворяющее начальным условиям

где f(х), F(x) – заданные функции, определенные в бесконечном промежутке (-∞, +∞).

Уравнение (27.15) перепишем так: и (положив t = у) сравним его с уравнением (26.9). Поскольку В² — АС = а² > 0, то уравнение является уравнением гиперболического типа.

Уравнение характеристик Ady² — 2Bdxdy + Cdx² = 0 принимает вид a²dt² — dx² = 0 или dx² — a²dta² = 0. Оно распадается на два уравнения dx – adt = 0, dx + adt = 0, откуда получаем х – at = С1, х + at – С1.

Введя новые переменные ξ и η по формулам

преобразуем уравнение (27.15) к каноническому виду.

Выражаем частные производные по переменным х, t через частные производные по ξ, η :

Подставляя в уравнение (27.15) выражения для частных производных второго порядка, получаем

Проинтегрируем последнее уравнение. Положим тогда

Следовательно, , или u = φ(ξ) + ψ(η) , где φ(ξ), ψ(η) – произвольные дважды дифференцируемые функции своих аргументов. Принимая во внимание (27.17), последнюю формулу можно записать так:

Формула (27.18) определяет общее решение уравнения (27.15).

Среди всех этих решений найдем то, которое удовлетворяет условиям (27.16), Для функции (27.18) и ее частной производной по t

условия (27.16) принимают вид

Второе равенство проинтегрируем по отрезку [0, х]. Обозначив переменную интегрирования через z получим

где С = φ (0) + ψ (0)

Это уравнение и первое из уравнений (27.19) позволяют определить функции φ (x) и ψ (x):

Подставляя в эти формулы вместо х соответственно х – at и х + at, получаем

В соответствии сформулой (27.18) находим

Формула (27.20) представляет решение Д’Аламбера рассматриваемой задачи Коши для уравнения колебаний неограниченной струны. Читателю предлагается непосредственной проверкой убедиться в том, что функция (27.20) удовлетворяет уравнению (27.15) и условиям (27.16).

А. А. Гусак. Высшая математика. Том 2. Стр. 247-253.


источники:

http://libraryno.ru/4-3-zadacha-o-kolebanii-struny-uravnenie-kolebaniy-struny-spec_gl_vm/

http://an-site.ru/kr/ko2.htm