Уравнение связи для функции нескольких переменных

Условный экстремум. Метод множителей Лагранжа. Первая часть.

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $\varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $\varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=\psi(x)$, то подставив $y=\psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=f\left(x,\psi(x)\right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+\lambda\varphi(x,y)$ (параметр $\lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_^<''>dx^2+2F_^<''>dxdy+F_^<''>dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F 0$, то $d^2F 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$. показать\скрыть

Некоторые авторы записывают определитель $H$ в иной форме (с знаком «-«):

В этой ситуации сформулированное выше правило изменится следующим образом: если $H > 0$, то функция имеет условный минимум, а при $H m$):

Обозначив множители Лагранжа как $\lambda_1,\lambda_2,\ldots,\lambda_m$, составим функцию Лагранжа:

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F 0.$$

Следовательно, в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_<\max>=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем:

$$H=8\cdot\left| \begin 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end \right|= 8\cdot\left| \begin 0 & -1 & -3\\ -1 & 1/2 & 0 \\ -3 & 0 & 1/2 \end \right|=-40$$

Так как $H 0$. Следовательно, знак $H$ противоположен знаку $\lambda$. Можно и довести вычисления до конца:

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $\left( dx \right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $\lambda_1=-\frac<1><2>$ получим $d^2F 0$, посему в данной точке функция имеет условный максимум, $z_<\max>=\frac<500><243>$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

Так как $ d^2F \Bigr|_=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $d^2F \Bigr|_=-10 dx^2 0$, то $M_1$ – точка минимума функции $u(x)$, при этом $u_<\min>=u(0)=0$. Так как $u_^<''>(M_2) 0; \; y > 0. \end \right. $$

Все дальнейшие преобразования осуществляются с учетом $x > 0; \; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $\lambda=-\frac<5x>$ и подставим найденное значение в первое уравнение: $5y-\frac<5x>\cdot \frac<4>=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $\frac<4y^2><8>+\frac<2>-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $\lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $\lambda=-10$, получив при этом:

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

Подставляя $x=2$, $y=1$, $\lambda=-10$, получим:

Ответ: в точке $(2;1)$ функция имеет условный максимум, $z_<\max>=6$.

В следующей части рассмотрим применение метода Лагранжа для функций большего количества переменных.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Уравнение связи для функции нескольких переменных

V . 1 . Дифференцируемость функции двух переменных

Функции двух переменных – частный случай функций нескольких (многих) переменных.

Если каждой паре ( x , y ) значений, двух независимых друг от друга переменных величин x и y из некоторой области их изменения D , ставится в соответствие одно и только одно значение переменной величины z , то z называется функцией двух независимых переменных x и y , определенной в области D плоскости x 0 y , и обозначается z = f ( x ; y ) (рис. 5.1).

При этом множество D называется областью определения функции и представляет собой либо всю плоскость x 0 y , либо ее часть. Линия, ограничивающая область D , называется ее границей. Точки области, не лежащие на границе, называются внутренними. Область, состоящая только из внутренних точек, называется открытой (незамкнутой). Если же к области относятся и точки границы, то область называется замкнутой.

Пример 5.1. Найти область определения функции

Решение . Выражение, стоящее под знаком корня четной степени, должно быть неотрицательно, то есть . Следовательно, область определения заданной функции представляет собой круг с центром в начале координат и радиусом R =3 . Графиком самой функции является верхняя полусфера с центром в точке O (0;0;0) и радиусом R =3 (см. рис. 5.1)

Если в точке M ( x , y ) области D восстановить перпендикуляр к плоскости x 0 y и на нем отложить отрезок длины z = f ( x ; y ) , то получим точку трехмерного пространства P ( x ; y ; z ).

Геометрическое место точек пространства, координаты которых удовлетворяют уравнению z = f ( x ; y ) , называется графиком функции двух переменных и представляет собой поверхность в пространстве. Координата z точки P называется ее аппликатой (см. рис. 5.1).

Для функции двух (нескольких) переменных вводятся понятия предела функции, ее непрерывности и дифференцируемости в точке. Дадим понятие окрестности точки. δ-окрест­ностью точки M 0 ( x 0 ; y 0 ) назы­вается совокупность всех внутренних точек круга радиуса δ с центром в точке M 0 или множество всех точек M ( x , y ) плоскости, координаты которых удовлетворяют неравенству (рис. 5.2).

Число А называется пределом функции z = f ( x ; y ) при стремлении точки M ( x , y ) к точке M 0 ( x 0 ; y 0 ) ( при x x 0 ; y y 0 ), если для любого ε>0 существует δ>0, что для всех точек M ( x , y ) из δ-окрестности точки M 0 ( x 0 ; y 0 ) , отличных от точки M 0 (для всех , удовлетворяющих неравенству

Заметим, что для функции одной переменной стремление аргумента х к значению х0 возможно только по двум направлениям (справа и слева). Для функции двух переменных число таких направлений бесконечно, и если предел существует, то он не зависит от пути, по которому М стремится к М0.

Сформулируем геометрический смысл предела функции двух переменных: каково бы ни было число ε>0, найдется δ— окрестность точки M 0( x 0; y 0) , что во всех ее точках M ( x , y ), отличных от M 0 , аппликаты соответствующих точек поверхности z = f ( x ; y ) отличаются от числа A по абсолютной величине меньше, чем на ε.

Предел функции двух переменных обладает свойствами, аналогичными свойствам предела функции одной переменной.

Пусть дана поверхность z = f ( x ; y ) и точка M ( x , y ), принадлежащая ее области определения D . Пересечем поверхность плоскостями x = const и y = const , проходящими через точку M . Дадим переменным приращения ∆ x = x x 0 и ∆ y = y y 0 , называемые приращениями аргументов. Тогда функция z получит приращения по направлениям x и y , которые обозначим y z и x z соответственно и назовем частными приращениями. Имеем Сообщив переменным оба приращения, получим приращение самой функции, которое называется ее полным приращением

Заметим, что полное приращение не равно сумме частных приращений.

­– она определена в этой точке и некоторой ее окрестности,

– имеет предел

Можно дать другое определение непрерывности функции z = f ( x ; y ) , равносильное (5.2): функция двух переменных называется непрерывной в точке если выполняется равенство

Если существует предел отношения частного приращения функции x z по аргументу x к приращению ∆ x , при стремлении последнего к нулю

y : (5.5)

и обозначить ее

Пример 5.2. Найти частные производные по переменным функции

Решение. Считая переменную y = const , учитывая правило (3.31) дифференцирования сложной функции и формулы (3.17), (3.18), (3.23), получим частную производную заданной функции по переменной x :

Аналогично, считая переменную x = const , учитывая формулы (3.17) и (3.19), получим частную производную заданной функции по переменной y :

Сумма первых двух слагаемых последнего равенства для z представляет собой главную часть приращения и называется полным дифференциалом dz функции двух переменных. Таким образом

Каждое слагаемое правой части равенства (5.6) называется частным дифференциалом функции двух переменных по переменной х и у соответственно.

Функции нескольких переменных

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Пусть: z — переменная величина с областью изменения R; R- числовая прямая; D — область на координатной плоскости R2.

Любое отображение D->R называют функцией двух переменных с областью определения D и пишут z = f(x;y).

Если каждой паре (х; у) двух независимых перемен­ных из области D по некоторому правилу ста­вится в соответствие одно определенное значение z из R, то переменную величину z называют функцией двух не­зависимых переменных х и у с областью определения D и пишут

Аналогичным образом определяются функции многих переменных

П р и м е р 1. Найти и изобразить область определения функции

Область определения – есть плоскость хОу за исключением точек, лежащих на параболе у = х2, см. рисунок.

П р и м е р 2. Найти и изобразить область определения функции

Область определения – есть часть плоско­сти, лежащая внутри круга радиуса г = 3 , с центром в начале координат, см. рисунок.

П р и м е р 3. Найти и изобразить область определения функции

Область определения – есть часть плоско­сти, в которой абсцисса и ордината ка­ждой точки имеют одинаковые знаки, т. е. это часть плоскости, лежащая в пер­вом и третьем координатных углах, см. рисунок.

К числу функций нескольких переменных относятся производственные функции.

Производственными функциями называют функ­ции, представляющие зависимости величин объемов вы­пускаемой продукции от переменных величин затрат ре­сурсов.

Производственные функции применяются не только в микроэкономических, но и в макроэкономических рас­четах.

Простейшая производственная функция — функция зависимости объема произведенной работы V от объемов трудовых ресурсов R и вложенного в производство капи­тала К

2.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ФУНКЦИИ ДВУХ

2.1.График функции двух переменных

Рассмотрим в пространстве прямоугольную систему координат и область D на плоскости хОу. В каждой точке М(х;у) из этой области восстановим перпендикуляр к плос­кости хОу и отложим на нем значение z = f(x; у). Геомет­рическое место полученных точек

является пространственным графиком, функции двух переменных.

Это некоторая поверхность.

Равенство z = f(x; у) называется уравнением этой по­верхности.

Функция двух переменных имеет наглядную геомет­рическую интерпретацию. Для функции числа перемен­ных n > 2 аналогом поверхности является гиперповерх­ность (n + 1) — мерного пространства, не имеющая геомет­рической интерпретации.

Линией уровня функции двух переменных z = f(x; у) называется линия f(x; у) = С (С = const) на плоскости хОу, в каждой точке которой функция сохраняет постоянное значение С.

Линия уровня представляет собой сечение поверхности графика функции двух переменных z = f(x; у) плоскостью z = С.

Поверхностью уровня функции трех переменных

u = f(x; у; z) называется поверхность в R3 (трехмерном про­странстве), в каждой точке которой функция сохраняет постоянное значение f(x;y;z) = C (С = const).

П р и м е р. Найти и построить линии уровня функции

Решение.

Линии уровня z = С данной функции имеют уравнения

Это окружности с центром в начале координат, радиусом R = C1/2 и уравнением

x2 + y2 = R2, см. рисунок.

Линии уровня позволяют представить рассматриваемую поверхность, дающую в сечении плоскостями z = C концентрические окружности.

При построении графика функции часто пользуются методом сечений.

П р и м е р. Построить график функции и найти .

Решение. Воспользуемся методом сечений.

– в плоскости – парабола.

– в плоскости –парабола.

– в плоскости – окружность.

Искомая поверхность – параболоид вращения.

Расстоянием между двумя произвольными точками и (евклидова) пространства называется число

Множество точек называется открытым кругом радиуса с центром в точке r.

Открытый круг радиуса ε с центром в точке A называется ε — окрестностью точки А.

Найти и изобразить графически область определения функции:

Построить линии уровня функций:

3. ПРЕДЕЛ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Основные понятия математического анализа, введен­ные для функции одной переменной, распространяются и на функции нескольких переменных.

О п р е д е л е н и е:

Постоянное число А называется пределом функции двух переменных z = f(x;у) при х —> х0, у —> у0, если для лю­бого

ε >0 существует δ >0 такое, что |f(х; у) — А| 0 — постоянное число.

Постоянное число А называется пределом функции двух переменных f(x;y) = f(M) при стремлении точки М к точке М0, если для любого ε >0 можно найти такое число г >0, что как только расстояние |М0М| 0.

Предел отношения при Δs—>0 называется произ-

водной функции z = f(х; у) в точке (х; у) по направлению вектора и обозначается

Переходя к этому пределу, получим

(*)

Таким образом, зная част­ные производные функции

z = f(x; у) можно найти произ­водную этой функции по любому направлению, а каждая частная производная является частным случаем произ­водной по направлению.

П р и м е р. Найти производную функции

в точке М(1;0) в направлении, составляющем с Ох угол в 30°.

Следовательно, функция z = f(x;y) в данном направлении возрастает.

Градиентом функции z = f(x; у) называется вектор , координатами которого являются соответствующие частные производные данной функции

Связь между производной функции по направлению и градиентом этой функции осуществляется соотношени­ем

т. е. производная функции z = f(x;y) в данном направле­нии равна проекции градиента функции на направле­ние дифференцирования.

Градиент функции в каждой точке направлен по нормали к соответствующей линии уровня данной функ­ции.

Направление градиента функции в данной точке есть направление наибольшей скорости возрастания функции в этой точке.


источники:

http://www.sites.google.com/site/vyssaamatem/glava-v-osnovy-differencialnogo-iscislenia-funkcii-neskolkih-peremennyh

http://pandia.ru/text/78/481/32586.php