Уравнение связи в классической полярографии

Классическая полярография

Для регистрации классических полярограмм ячейку с капающим ртутным рабочим электродом и насыщенным каломельным электродом сравнения (или донной ртутью) через калиброванное линейное сопротивление присоединяют к источнику постоянного напряжения и изменяют потенциал со скоростью 2—5 мВ/с. Для обеспечения достаточно высокой электропроводности в ячейку помещают 0,05—1 М раствор индифферентного электролита (фона).

Вклад других, недиффузионных механизмов поступления ионов в прикатодный слой в условиях большого избытка индифферентного фонового электролита пренебрежимо мал. Основное значение среди недиффузионных процессов имеет миграция ионов к катоду под действием электрического поля. Если не устранить вызываемый этим процессом миграционный ток, общий ток окажется неконтролируемым. Подавление миграционного тока достигается введением в раствор в достаточной концентрации так называемого индифферентного, т.е. не принимающего участия в электродной реакции, или фонового электролита со значительно более отрицательным потенциалом выделения, чем у анализируемого иона. Катионы фонового электролита экранируют электрод, уменьшая тем самым движущую силу миграции под действием электрического поля практически до нуля.

При некотором потенциале катода концентрация ионов у поверхности ртутной капли См уменьшится до ничтожно малой по сравнению с концентрацией в массе раствора, и скорость разряда ионов на катоде станет равной скорости диффузии.

Концентрация восстанавливающегося иона в глубине раствора постоянна, так как электролиз идет при очень небольшой силе тока (порядка 10 -5 А), а концентрация в прикатодном слое близка к нулю. Поэтому разность концентраций, определяющая скорость диффузии при данной температуре, будет постоянна, что и приводит к постоянной скорости поступления ионов к катоду. Наступившее состояние равновесия будет характеризоваться постоянной силой тока, не изменяющейся при дальнейшем увеличении напряжения. Этот постоянный ток, контролируемый диффузией, называют диффузионным и обозначают Iд.

Зависимость силы тока от приложенного напряжения при обратимом электродном процессе выглядит следующим образом:

(1)

Это уравнение полярографической волны, а величину Е½ называют потенциалом полуволны.


Рис. 2. Зависимость силы тока от приложенного напряжения (полярографическая волна) (Классическая полярограмма в идеализированном виде)

Типичная зависимость силы тока от приложенного напряжения дана на рис. 2. Это полярографическая волна (полярограмма). Из рисунка видно, что в начале процесса при небольшом потенциале катода сила тока медленно увеличивается с возрастанием потенциала — это так называемый остаточный ток, его величина имеет порядок 10 -7 А. По достижении потенциала восстановления на катоде начинается разряд ионов и сила тока резко возрастает, стремясь к предельной величине диффузионного тока. При I = ½Id уравнение (1) переходит в

Это соотношение показывает независимость потенциала полуволны от силы тока и, следовательно, от концентрации восстанавливающегося иона. Потенциал полуволны является, таким образом, качественной характеристикой иона в растворе данного фонового электролита и определение потенциала полуволны составляет основу качественного полярографического анализа.

Однако потенциал полуволны существенно зависит от среды, природы и концентрации фонового электролита. Особое значение имеет наличие в растворе веществ, способных к комплексообразованию с определяемым ионом. Присутствие в исследуемом растворе лиганда смещает потенциал полуволны в отрицательную область, что используется для определения состава и констант устойчивости координационных соединений. Сдвиг потенциала полуволны при введении в раствор лиганда значительно расширяет возможности полярографического анализа, позволяя создавать условия для определения нескольких компонентов в одном растворе без их предварительного разделения.

Если в растворе находится несколько веществ, потенциалы полуволны которых различаются на 20 мВ и больше, то на полярограмме будет не одна волна, а несколько — по числу восстанавливающихся ионов (рис. 3), а возможно и больше, так как при ступенчатом восстановлении один ион может давать две волны. Можно получить таким образом полярографический спектр ионов, а затем по этим данным и измеренному потенциалу понятно, что положение элемента в таком спектре будет зависеть от фонового электролита: его природы и концентрации.


Рис. 3. Классическая полярограмма в идеализированном виде для нескольких (трех) электродоактивных компонентов в смеси

Полярограмма, изображенная на рис. 2, несколько идеализирована, так как на ней не видны осцилляции тока, вызванные периодическим отрывом капель ртути. Иногда эти осцилляции очень затрудняют работу особенно в области малых концентраций определяемого элемента.

Кроме того, на полярограммах нередко возникают максимумы различной формы, мешающие определению истинного потенциала полуволны и. силы тока. Различают максимумы I и II рода. Теория связывает их появление с гидродинамическими явлениями в растворе, вызываемыми каплями ртути, и адсорбционными процессами. Для подавления максимумов в полярографируемый раствор обычно вводят поверхностно-активные вещества: желатин, агар-агар и др. Подавление максимумов поверхностно-активными веществами лежит в основе нескольких чувствительных (до 10 -9 моль/л) аналитических методик определения этих веществ в растворе.

Связь диффузионного тока Iд с концентрацией иона См и другими величинами передается уравнением Ильковича.

Формула, получена Ильковичем, для капающего ртутного электрода.

при следующих допущениях:

1) скорость диффузии является определяющим фактором (для обратимого электродного процесса это справедливо для любой точки волны, для необратимого — только для потенциалов предельного тока);

2) ртутная капля является свободным шаром;

3) на расстояниях х ½ m ⅔ t 1/6 c (3)

где n — число электронов, участвующих в электрохимической реакции; D— коэффициент диффузии, см 2 с -1 ; т — — масса ртути, вытекающий из капилляра в 1 с, мг·с -1 ; t— время жизни капли (период капания), с; с — концентрация, ммоль/л; Iд — ток, мкА.

Среди величин, входящих в это уравнение, труднее всего поддается экспериментальному определению коэффициент диффузии D, а использование соответствующих справочных данных не всегда возможно. Поэтому коэффициент пропорциональности между концентрацией вещества и силой диффузионного тока обычно устанавливают с помощью стандартных растворов. Действительно, при постоянных условиях полярографирования D, т и t постоянны и уравнение переходит в

В связи с этим в работах по полярографии всегда указывается так называемая характеристика капилляра, вычисляемая как т 2/3 t 1/6 . Линейная зависимость (4) является основой количественного полярографического анализа.

Модуль 3. Лекция 8

Модуль 3. Лекция 8.

1. Полярографический анализ (полярография). Общие понятия, принцип метода.

Полярографический анализ (полярография) основан на использовании следующих зависимостей между электрическими параметрами электрохимической (в данном случае — полярографической) ячейки, к которой прилагается внешний потенциал, и свойствами содержащегося в ней анализируемого раствора.

а) В качественном полярографическом анализе используют связь между величиной приложенного на микроэлектроде внешнего электрического потенциала, при котором наблюдается восстановление (или окисление) анализируемого вещества на микроэлектроде в данных условиях, и природой восстанавливающегося (или окисляющегося) вещества.

б) В количественном полярографическом анализе используют связь между величиной диффузионного электрического тока, устанавливающегося в полярографической ячейке после достижения определенного значения приложенного на микроэлектроде электрического потенциала, и концентрацией определяемого (восстанавливающегося или окисляющегося) вещества в анализируемом растворе.

Электрические параметры — величину приложенного электрического потенциала и величину диффузионного тока — определяют при анализе получаемых поляризационных, или вольт-амперных, кривых, отражающих графически зависимость электрического тока в полярографической ячейке от величины приложенного потенциала микроэлектрода. Поэтому полярографию иногда называют прямой вольтамперометрией.

Рис. 1. Схема полярографической ячейки с ртутным капающим электродом и с ртутным анодом ) или с насыщенным каломельным электродом (б):

1 — ртутный капающий электрод, 2 — ртутный анод, 3 — анализируемый раствор, 4 — резервуар с жидкой ртутью, 5 — проводники к внешнему источнику постоянного тока, 6 — насыщенный каломельный электрод, 7— пробка из пористого стекла

Классический полярографический метод анализа с применением ртутного капающего (капельного) электрода был разработан и предложен в 1922 г. чешским ученым Ярославом Гейровским (1890—1967), хотя сам ртутный капающий электрод применялся чешским физиком Б. Кучерой еще в 1903 г. В 1925 г. Я. Гейровский и М. Шиката сконструировали первый полярограф, позволивший автоматически регистрировать поляризационные кривые. В дальнейшем были разработаны различные модификации полярографического метода.

Рассмотрим кратко сущность классической полярографии, основанной на использовании ртутного капающего микроэлектрода.

На рис. 1, а показана схема полярографической ячейки с ртутным капающим микроэлектродом — катодом. В сосуде, в который вносится анализируемый раствор с определяемым веществом, имеются два электрода — микрокатод и макроанод, подключенные к внешнему источнику постоянного электрического тока. На микрокатод прилагается постепенно возрастающий по абсолютной величине отрицательный электрический потенциал.

Рис. 2. Полярограмма водного щелочного 0,0005 моль/л раствора нитрата свинца при 25 °С ( i — ток, Е — потенциал):

1 — остаточный ток, 2 — предельный ток. Значения потенциала даны относительно насыщенного каломельного электрода, iD — диффузионный ток, Е1/2 — потенциал полуволны

Поверхность ртутного капающего микроэлектрода, т. е. ртутной капли, очень мала, тогда как поверхность анода — большая.

В качестве макроэлектрода — анода на практике наиболее часто применяют не ртутный, а насыщенный каломельный электрод (рис.1, б), по отношению к которому обычно и измеряют потенциал капающего ртутного микрокатода.

Анализируемый раствор содержит кроме определяемого вещества также индифферентный — фоновый — электролит (фон), ионы которого не разряжаются на электродах в условиях проведения полярографического анализа, а служат в качестве токопроводящих частиц для поддержания определенной величины электрического тока в ячейке, когда определяемое вещество еще не восстанавливается на микрокатоде.

Пусть определяемое вещество — это катионы Мn+, присутствующие в анализируемом растворе.

2.2. Полярографические кривые, потенциал полуволны, связь величины диффузионного тока с концентрацией.

На рис. 2. показано изменение электрического тока i, проходящего через полярографическую ячейку, как функции возрастающего потенциала Е, приложенного на ртутном капающем микрокатоде, — так называемая поляризационная, или вольт-амперная, кривая. При постепенном повышении приложенного потенциала вначале электрический ток, обусловленный присутствием ионов фонового электролита, растворенного кислорода и восстанавливающихся возможных примесей, возрастает очень медленно — остается почти постоянным. Это — так называемый остаточный ток. При некотором значении потенциала, называемого потенциалом выделения, ток в ячейке резко возрастает (фарадеевский ток) и при сравнительно небольшом дальнейшем повышении потенциала достигает максимального, возможного в данных условиях значения, после чего снова изменяется мало. Это — так называемый предельный ток. Разность между предельным и остаточным током составляет диффузионный ток iD.

Ртутная капля по мере ее формирования на конце капилляра (вытекания из капилляра) остается заряженной отрицательно до тех пор, пока она не оторвется от капилляра и окруженной раствором. В поверхностном приэлектродном слое раствора около ртутной капли находятся катионы Мn+ определяемого вещества, которые разряжаются на ртутной капле по схеме

амальгама металла М

при достижении величины потенциала выделения, характерного и специфичного только для данных катионов. После достижения потенциала выделения эти катионы очень быстро разряжаются на ртутной капле, поэтому электрический ток в полярографической ячейке резко возрастает. Концентрация катионов Мn+ в поверхностном приэлектродном слое раствора около ртутной капли столь же резко понижается (поскольку катионы восстанавливаются до металла) и становится меньше их концентрации в объеме анализируемого раствора.

Транспорт катионов Мn+ в поверхностный приэлектродный слой раствора, окружающий ртутную каплю, поддерживается за счет диффузии катионов Мn+ из объема раствора и зависит от скорости их диффузии. При дальнейшем повышении приложенного потенциала ртутных капель достигается максимально возможная скорость диффузии, которая остается практически постоянной, так что при данной концентрации катионов в растворе ток в полярографической ячейке также достигает максимального, практически постоянного значения. Устанавливается стационарный предельный ток.

Если концентрацию катионов Мn+ в растворе увеличить, то увеличится и число стационарно восстанавливающихся катионов, т. е. возрастает предельный и диффузионный ток. Таким образом, величина предельного и диффузионного тока в полярографической ячейке зависит от концентрации определяемого вещества (восстанавливающегося на ртутном капающем электроде) в анализируемом растворе, тогда как значение потенциала выделения зависит от природы разряжающихся частиц и не зависит от их концентрации.

Количество катионов, восстанавливающихся на ртутном капающем электроде, незначительно и практически не сказывается на изменении концентрации этих катионов в объеме раствора.

Вещество, разряжающееся на микрокатоде, называют деполяризатором, полярографически активным, электроактивным. Эти названия условны, поскольку вещество может быть полярографически неактивно при одном потенциале и полярографически активно при более высоком потенциале.

Вместо потенциала выделения на практике определяют потенциал полуволны Е1/2, соответствующий половине величины диффузионного тока (рис. 2.).

Полученную полярографическую кривую называют, как отмечалось выше, полярограммой, или полярографической волной. При использовании капающего ртутного электрода на полярограмме наблюдаются осцилляции тока (его периодическое небольшое увеличение и уменьшение). Каждая такая осцилляция соответствует возникновению, росту и отрыву ртутной капли от капилляра микрокатода.

В некоторых современных полярографах электрический ток измеряется только в конце каплеобразования, что позволяет устранить осцилляции на полярограмме.

На ртутном капающем микрокатоде происходит постоянное возобновление ртутных капель, на поверхности которых осуществляется разряд катионов. Поверхность такого электрода все время обновляется за счет новых ртутных капель, что исключает изменение его свойств вследствие проткающих на нем электрохимических процессов и составляет одно из главных достоинств использования ртутного капающего электрода.

Таким образом, при проведении качественного и количественного полярографического анализа используют два параметра, получаемые при рассмотрении полярограмм: потенциал полуволны Е1/2 и величину диффузионного тока iD (высоту h полярографической волны).

Как указывалось выше, потенциал полуволны Е1/2 характеризует природу восстанавливающегося катиона и не зависит от его концентрации. Для разных катионов, полярографируемых в одних и тех же условиях, он неодинаков, что и позволяет открывать различные катионы в растворе. Потенциал полуволны Е1/2 зависит, кроме природы самого восстанавливающегося вещества, от природы растворителя, фонового электролита, состава и pH анализируемого раствора, присутствия веществ-комплексообразователей, температуры. Величина потенциала полуволны открываемого или определяемого катиона должна быть меньше величины потенциала разряда ионов фонового электролита.

Рис. 3. Полярограмма раствора, содержащего катионы кадмия и свинца; i — ток, Е — приложенный потенциал относительно насыщенного каломельного электрода

В табл. 1. приведены в качестве примера значения потенциала полуволны для некоторых катионов с указанием состава фона. Из данных табл. 1. следует, что состав фона и pH раствора существенно влияют на величину потенциала полуволны.

Если в анализируемом растворе присутствуют несколько восстанавливающихся веществ, причем разность между значениями их потенциалов полуволны составляет не менее 0,2 В, то на полярограмме наблюдаются несколько волн (рис. 3.), каждая из которых отвечает тому или иному восстанавливающемуся веществу.

Таблица 1. Значения потенциала полуволны Е1/2 некоторых катионов металлов (относительно потенциала насыщенного каломельного электрода).

Полярографический метод анализа

Классическая полярография, основы которой разработаны Я. Гейровским, основана на изучении вольтамперных кривых, полу­чаемых при электролизе электролита, в котором присутствуют веще­ства, восстанавливающиеся под действием электрического тока и называемые деполяризаторами [20]. Полярографический метод анализа позволяет анализировать как неорганические, так и органические соединения и имеет ряд преимуществ:

1) универсальность метода, возможность одновременного качествен­ного и количественного анализа смеси нескольких веществ в одной пробе без их разделения;

2) высокая чувствительность (Ю’Мо*6 моль/л), позволяющая прово­дить анализ в малых количествах пробы и сочетающаяся с достаточ­ной точностью — до 3 % отн.;

3) быстрота проведения анализа;

4) объективность получаемых результатов и возможность автоматиче­ской регистрации определений;

5) хорошая воспроизводимость результатов анализа, обусловленная особенностями электролиза на ртутном капельном электроде.

Первый осциллополярограф для аналитических целей был сконструирован в 1938 году, в нашей стране метод начал развиваться с начала 50-х годов.

Рис.11.1. Схема полярографичес­кой установки

Полярограф включает электрохимический датчик (ячейку), за­дающий, измерительный и регистрирующий блоки (рис. 11.1). Поля­рографическая ячейка представляет собой стеклянный сосуд объёмом 1-20 мл (иногда конической формы для уменьшения объема сосуда) с термостатированием или без него. Напряжение 2-4 В от внешнего ис­точника Б (батареи) через делитель напряжения R подается на ртут­ные электроды полярографической ячейки: катод — ртутный капель­ный электрод и анод — слой ртути на дне ячейки. Ток, проходящий че­рез ячейку, измеряется гальванометром Г, а величина напряжения, подаваемого на ячейку, регистрируется перемещением движка на де­лителе R от нуля до максимума. Напряжение Е, поданное на ячейку через делитель, создает поляризацию электродов и расходуется на преодоление омического сопротивления электролита Re в ячейке:

МЕТОДЫ ИССЛЕДОВАНИЯ СТРУКТУРЫ и СВОЙСТВ ПОЛИМЕРОВ

Определение растворимости серы в эластомерах

Чаще всего пользуются оптическими или радиоизотопными методами. Оптические методы предполагают исследование тонких плёнок, приготовленных из композиции. В образцах, которые обяза­тельно должны быть прозрачными, оценивается число частиц серы, однако этот метод …

Безроторные реометры

В безроторных реометрах поведение резиновой смеси в про­цессе вулканизации оценивается в колеблющейся полуформе. Крутя­щий момент, передаваемый через образец, измеряют датчиками в дру­гой полуформе, а непосредственное использование нагретых полу­форм сокращает продолжительность …

Исследование вулканизатов

Деструктивные процессы в вулканизационных сетках, проте­кающие при термоокислительном воздействии в поле механических нагрузок, обусловливают необратимую статическую и динамическую ползучесть (крип). Для эластомерных систем предлагается [36] новый метод ТМА, основанный на …

Продажа шагающий экскаватор 20/90

Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др.) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788


источники:

http://pandia.ru/text/80/236/16484.php

http://msd.com.ua/metody-issledovaniya-struktury-i-svojstv-polimerov/polyarograficheskij-metod-analiza/