Уравнение тангенса угла между прямыми

Угол между прямыми

Определение угла между прямыми

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k 1· k 2 = 0), то прямые перпендикулярны.

Соответственно легко найти угол между прямыми

tg γ = tg ( α — β ) = tg α — tg β 1 + tg α ·tg β = k 1 — k 2 1 + k 1· k 2

Угол между прямыми через направляющие векторы этих прямых

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано параметрически

x = l t + a y = m t + b

то вектор направляющей имеет вид

Если уравнение прямой задано как

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = — C B значит точка на прямой имеет координаты K(0, — C B ), при y = 0 => x = — C A значит точка на прямой имеет координаты M(- C A , 0). Вектор направляющей KM = .

Если дано каноническое уравнение прямой

то вектор направляющей имеет вид

Если задано уравнение прямой с угловым коэффициентом

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b ), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b ). Вектор направляющей KM =

Угол между прямыми через векторы нормалей этих прямых

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано как

то вектор нормали имеет вид

Если задано уравнение прямой с угловым коэффициентом

то вектор нормали имеет вид

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

sin φ = | a · b | | a | · | b |

Примеры задач на вычисления угла между прямыми на плоскости

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k 1 — k 2 1 + k 1· k 2 = 2 — (-3) 1 + 2·(-3) = 5 -5 = 1

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор <1; 2>, для второй прямой направляющий вектор

cos φ = |1 · 2 + 2 · 1| 1 2 + 2 2 · 2 2 + 1 2 = 4 5 · 5 = 0.8

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2 x + 3 y = 0 => y = — 2 3 x ( k 1 = — 2 3 )

x — 2 3 = y 4 => y = 4 3 x — 8 3 ( k 2 = 4 3 )

tg γ = k 1 — k 2 1 + k 1· k 2 = — 2 3 — 4 3 1 + (- 2 3 )· 4 3 = — 6 3 1 — 8 9 = 18

Угол между прямыми в пространстве

cos φ = | a · b | | a | · | b |

Если дано каноническое уравнение прямой

то направляющий вектор имеет вид

Если уравнение прямой задано параметрически

x = l t + a y = m t + b z = n t + c

то направляющий вектор имеет вид

Решение: Так как прямые заданы параметрически, то <2; 1; -1>— направляющий вектор первой прямой, <1; -2; 0>направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0| 2 2 + 1 2 + (-1) 2 · 1 2 + (-2) 2 + 0 2 = 0 6 · 5 = 0

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор <3; 4; 5>.

Преобразуем второе уравнение к каноническому вид.

1 — 3 y = 1 + y -1/3 = y — 1/3 -1/3

3 z — 5 2 = z — 5/3 2/3

Получено уравнение второй прямой в канонической форме

x — 2 -2 = y — 1/3 -1/3 = z — 5/3 2/3

<-2; - 1 3 ; 2 3 >— направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(- 1 3 ) + 5· 2 3 3 2 + 4 2 + 5 2 · (-2) 2 + (- 1 3 ) 2 + ( 2 3 ) 2 = -6 — 4 3 + 10 3 9 + 16 + 25 · 4 + 1 9 + 4 9 = -4 50 · 41/9 = 12 5 82 = 6 82 205

Угол между прямыми онлайн

С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), выберите вид уравнения (канонический, параметрический, общий (для двухмерного пространства)), введите данные в ячейки и нажмите на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

1. Угол между прямыми на плоскости

Прямые заданы каноническими уравнениями

1.1. Определение угла между прямыми

Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями

,(1.1)
,(1.2)

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).

,
,(1.3)

Из выражения (1.3) получим:

.(1.4)

Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

.(1.5)
.(1.6)
.

Упростим и решим:

.

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Угол между прямыми равен:

1.2. Условие параллельности прямых

Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:

.(1.7)

Сделаем преобразования с выражением (1.7):

,
,
,
,
,
.(1.8)

Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:

.(1.9)

Пример 2. Определить, параллельны ли прямые

.(1.10)
.(1.11)
, .

Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.

Ответ. Прямые (1.10) и (1.11) параллельны.

1.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:

.(1.12)

Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

.(1.13)

Пример 3. Определить, перпендикулярны ли прямые

(1.14)
.(1.15)
.(16)

Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.

Ответ. Прямые (1.14) и (1.15) перпендикулярны.

Прямые заданы общими уравнениями

1.4. Определение угла между прямыми

Пусть две прямые L1 и L2 заданы общими уравнениями

(1.17)
.(1.18)

Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).

.

Из определения скалярного произведения двух векторов, имеем:

.(1.19)

Из уравнения (19) получим

.(1.20)

Пример 4. Найти угол между прямыми

5x1−2x2+3=0(1.21)
x1+3x2−1=0.(1.22)
(23)

Упростим и решим:

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

1.5. Условие параллельности прямых

Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:

.(1.24)

С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:

.(1.25)

Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).

Пример 5. Определить, параллельны ли прямые

4x+2y+2=0(1.26)

Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.

Ответ. Прямые (1.26) и (1.27) параллельны.

1.6. Условие перпендикулярности прямых

Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда

A1A2+B1B2=0.(1.28)

Таким образом условие перпендикулярности прямых определяется равенством (1.28).

Пример 6. Определить, перпендикулярны ли прямые

4x−1y+2=0(1.29)
2x+8y−14=0.(1.30)

Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.

Ответ. Прямые (1.29) и (1.30) перпендикулярны.

2. Угол между прямыми в пространстве

2.1. Определение угла между прямыми

Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями

,(2.1)
,(2.2)

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .

,(2.3)

Из выражения (2.3) получим:

.(2.4)

Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

.(2.5)
(2.6)
.
.

Упростим и решим:

.

Угол между прямыми равен:

2.2. Условие параллельности прямых

Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть

m1=αm2, p1=αp2, l1=αl2(2.7)

где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.

Условие параллельности прямых можно представить и так:

(2.8)

Отметим, что любую пропорцию нужно понимать как равенство ad=bc.

Пример 2. Определить, параллельны ли прямые

.(2.9)
.(2.10)
, , .

Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.

Ответ. Прямые (2,9) и (2,10) параллельны.

Пример 3. Определить, параллельны ли прямые

.(2.11)
.(2.12)
.(2.13)

Выражение (2.13) нужно понимать так:

, , .(2.14)

Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.

Ответ. Прямые (2.11) и (2.12) параллельны.

2.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:

.(2.15)

Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

.(2.16)

Пример 3. Определить, перпендикулярны ли прямые

(2.17)
.(2.18)
.(2.19)

Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.

Ответ. Прямые (2.17) и (2.18) перпендикулярны.

Угол между прямыми определение, формула нахождения между скрещивающимися прямыми, методы и примеры решения задач

Как найти угол между прямыми? Пара прямых на плоскости может иметь несколько вариантов расположения относительно друг друга: полностью совпадать, быть параллельными друг другу и пересекающимися.

Одной из типичных геометрических задач является задача по нахождению угла между двумя пересекающимися линиями.

Определение угла между скрещивающимися прямыми

Пересечение двух линий на плоскости говорит о наличии у них одной общей точки. Она же является центром их пересечения и делит их на лучи.

Лучи формируют четыре угла, которые являются неразвернутыми. Зная о размере одного из них, можно вычислить значение и остальных. Точно можно утверждать, что если один из них – прямоугольный, то остальные три равнозначны ему, а линии будут перпендикулярными.

Рис. 1 Графическое отображение пересечения прямых

Как найти угол между скрещивающимися прямыми

Для определения угла между двумя скрещивающимися линиями можно воспользоваться специальным онлайн-калькулятором или применить традиционный математический алгоритм для вычислений.

Предположим, что две бесконечные линии задаются уравнениями общего вида:

Искомое значение следует обозначить как φ. Численная величина угла измеряется в градусах от 0 до 90°, т. е. угол будет острым или прямоугольным. Необходимо ввести еще одно понятие– угол ψ между нормальными векторами данных прямых:

Если он меньше, либо равен 90°, то непосредственно сам искомый угол будет соответствовать его градусной мере. В случае когда ψ больше 90°, для вычисления φ необходимо применить известную формулу:

Для обоих вариантов достоверно утверждение, что cos φ = lcos ψl. Выполнив необходимые вычисления, можно рассчитать искомое значение:

Если по условию задачи существует некий прямоугольный треугольник с известными сторонами, расположенными на двух прямых, то для вычисления угла между этими прямыми необходимо знать синус, тангенс и косинус искомого угла.

Для нахождения значения синуса угла, образованного в результате пересечения двух прямых, вычисляют модуль косинуса этого угла, образованного направляющими векторами данных прямых.

Пример решения задачи

На школьных уроках геометрии для решения в классе часто предлагается следующий вид задач по поиску угла между двумя прямыми.

Ниже приведем алгоритм решения задачи, при которой бесконечные линии на плоскости заданы уравнениями общего вида, в которых присутствует угловой коэффициент.

Обозначим прямые как (L1) и (L2). Каждая из них задается уравнением следующего вида:

А1х + В1у + С1 = 0;

А2х + В2у + С2 = 0;

Зная, что нормальные вектора каждой из них имеют вид:

Суть задачи сводится к вычислению угла φ, образованного нормальными векторами.

Используем определение скалярного произведения векторов:

и координатное выражение их длин, а также их скалярное произведение:

В практических задачах по математике часто требуется найти не сам угол между пресекающимися прямыми, а составить уравнение их всех, при условии, что прямые пересекаются между собой.

Так, если прямые заданы уравнениями общего вида с коэффициентами, то

Последнее равенство часто называют уравнением биссектрис углов, образованных в результате пересечения прямых. Понятие «биссектриса» в геометрии — это некое геометрическое место точек, которые удалены на одинаковое расстояние от сторон угла.

Если прямые задаются уравнениями, включающими угловой коэффициент, который определяется тангенсом угла, найти значение углов, образованных при их пересечении, достаточно просто:

Рис. 2 Углы, образованные пересечением двух прямых на плоскости

где k1 и k2 – те самые угловые коэффициенты.

Следовательно, чтобы вычислить значение γ, следует применить формулы:


источники:

http://matworld.ru/analytic-geometry/ugol-mezhdu-prjamymi.php

http://kupuk.net/uroki/algebra/ygol-mejdy-priamymi-opredelenie-formyla-nahojdeniia-mejdy-skreshivaushimisia-priamymi-metody-i-primery-resheniia-zadach/