Уравнение теплоотдачи в пограничном слое

Теплоотдача при ламинарном пограничном слое

Для расчета теплоотдачи при ламинарном слое используем интегральное уравнение теплового потока для теплового пограничного слоя:

Чтобы рассчитать теплоотдачу, необходимо знать распределение скорости в слое. В случае ламинарного пограничного слоя распределение скорости в нем близко к параболе (кубическая парабола):

wх = а + bу + су 2 + dу 3 (a)

Уравнение распределения скорости должно удовлетворять граничным условиям.

При у = 0 wх = 0 (условие «прилипания»), полагаем также, что (¶ 2 wх/¶у 2 ) = 0.

Уравнение (а) будет удовлетворять этим требованиям, если

Распределение скорости при этом примет вид:

(б)

При распределении скорости согласно (б) из интегрального уравнения импульсов

можно получить, что толщина гидродинамического пограничного слоя определяется выражением:

или в безразмерной форме

Таким образом, толщина d изменяется пропорционально корню квадратному из расстояния от переднего края пластины до данной точки. Чем больше вязкость, тем толще d. Чем выше скорость – тем меньше (тоньше) слой d.

Пограничные условия для температур:

При у = 0 u (здесь и ниже принято u = Т – Тс) и (¶u/¶у)у=0 = const и Þ (¶ 2 u/¶у 2 ) = 0, если учесть, что в жидкости, непосредственно прилегающей к плоской стенке, теплота передается по у только теплопроводностью.

При у = k (на внешней границе теплового слоя) u = u0 = const и (¶u/¶у)у=k = 0.

То есть граничные условия получились аналогичны принятым ранее условиям для гидродинамического пограничного слоя.

В результате получаем, что распределение температуры описывается уравнением, аналогичным по форме записи уравнению распределения скорости

После подстановки в интегральное уравнение теплового потока и упрощений получили:

,

Тогда – то есть отношение k/d не зависит от х, а зависит только от числа Рr.

Для капельных жидкостей Рr ³ 1, Þd³ k.

Для газов Рr = 0,6 – 1 (для воздуха Рr » 0,7). При этомk>d.

Определим коэффициент теплоотдачи из уравнения , Þ у=0 зная, что (это следует из производной), опуская знак ²-² получим:

(а)

Коэффициент теплоотдачи обратно пропорционален толщине пограничного слоя (чем меньше толщина k, тем больше a Þ лучше теплоотдачи).

Уравнение (а) можно привести к безразмерному виду (умножив левую и правую части на х/l и подставляя значение ):

(б)

Здесь Nux = ax/l = a /l x/ = NuеX; Rex = w0x/n = w0 /n x/ = ReеX; Pr = n/a; – длина пластины вдоль потока.

Формула (б) справедлива только при условии, что температура поверхности пластины постоянна, физические параметры жидкости, не зависят от температуры и в начале пластины нет необогреваемого участка.

Коэффициент теплоотдачи капельной жидкости зависит от рода жидкости, ее температуры, направления теплового потока. Особенно существенное влияние оказывает зависимость вязкости от температуры. При охлаждении жидкости, вязкость увеличивается, течение замедляется. Поэтому для жидкостей вводится поправка (Prж/ Prс) 0,25 , которая учитывает влияние на теплообмен изменения вязкости. Для (Prж/ Prс) 0,25 Þ 1.

Индекс «с» — означает, что Prс вычислен при температуре стенки; «ж» — при температуре жидкости вдали от стенки.

Переход ламинарного течения в турбулентное

1 – ламинарный пограничный слой; 2 – переходная область; 3 – турбулентный пограничный слой; 4 – вязкий (ламинарный) подслой.

Переход ламинарного течения в турбулентное происходит на некотором участке. Течение на этом участке имеет нестабильный характер и называется переходным.

Законы теплообмена при ламинарном и турбулентном режимах различны, поэтому определение их границ имеет большое значение.

О режиме течения судят по критическим значениям числа Re:

где х – продольная координата, отсчитываемая от передней кромки поверхности. Зная Reкр1 и Reкр2 можно определить хкр1 и хкр2, которые определяют соответственно начало разрушения ламинарного слоя и появления устойчивого турбулентного течения. Из опытных данных получено, что

На переход влияют такие характеристики внешнего источника, как степень турбулентности, масштаб турбулентности. При ускорении потока переход затягивается, при замедлении — наступает при меньших значениях х (или Reх).

Кроме параметров внешнего потока на переход из ламинарного течения в турбулентное влияют параметры, связанные с омываемым теплом. Значения Reкр1 и Reкр2 зависят:

1) от интенсивности теплообмена;

2) от волнистости, шероховатости поверхности;

3) обтекаемости передней кромки пластины;

4) вибрации тела.

На рис. представлена зависимость критических чисел Рейнольдса от степени турбулентности набегающего потока

,

где v¢ 2 x, v¢ 2 y, v¢ 2 z – средние во времени квадраты трех составляющих пульсации скорости; w0 – скорость внешнего потока.

При сравнительно малых значениях Tu переход не зависит от степени турбулентности внешнего потока, а определяется характеристиками самого ламинарного слоя (его устойчивостью).

Увеличение Tu приводит к уменьшению Reкр.

На практике сечение перехода можно определить по изменению осредненной во времени vх (у). При турбулентном течении vх резко увеличивается вблизи стенки, на удалении от нее vх (у) становится более выровненной. Выравнивание объясняется турбулентным переносом кол-ва движения.

Теплоотдача при турбулентном пограничном слое

Перенос теплоты и количества движения поперек турбулентного пограничного слоя можно описать уравнениями:

q = — (l + lт= — (l + rсрeq,

S = (m + mт= (m + res,

где S – касательная сила трения; lт, mт – коэффициенты турбулентного переноса теплоты и кол-во движения; eq = lт/rср ,es = mт/r — кинематические коэффициенты турбулентного переноса теплоты и кол-ва движения.

Эти уравнения можно переписать в виде:

q = — l(1 + (1)

S = rn(1 + es/n)× (2)

Величину Prт – называется турбулентным числом Прандтля. С учетом (1) и (2) дифференциальное уравнение энергии и движения для турбулентного пограничного слоя примут вид

= а [(1 + ) ], (3)

= n [(1 + es/n) ]. (4)

Если Pr = 1 (а = n) и Prт = 1, то уравнения (3) и (4) идентичны. В этом случае при идентичных граничных условиях поля температуры u и скорости vх будут подобны.

Для того, чтобы проинтегрировать уравнение (3) и (4), необходимо иметь сведения о коэффициентах турбулентного переноса теплоты es и eq.

Опыты показывают сложность движения в турбулентном слое:

А

Б

dп I

Рис. Турбулентный пограничный слой А – внешняя область; Б – пристенная область (I – вязкий подслой (ламинарный); II – промежуточный слой). Пульсации, особенно крупномасштабные (низкочастотные), проникают в вязкий подслой, где их течение регламентируется

вязкими силами. Поэтому граница подслоя четко не определена. Наиболее высокая интенсивность турбулентности наблюдается в пристенной области Б. Внешняя граница турбулентного пограничного слоя непрерывно пульсирует. В зависимости от области характер переноса теплоты различен.

Аналогично вязкому подслою непосредственно у стенки наблюдается тепловой подслой.

Он характеризуется преобладанием теплоты теплопроводностью над турбулентным переносом.

При Pr = 1 толщина вязкого подслоя dп и теплового kп совпадают.

Поскольку в тепловом подслое перенос теплоты определяется теплопроводностью, то изменение температуры по его толщине описывается уравнением прямой (как для плоской стенки). В остальной части турбулентного слоя температура распределяется по логарифмическому закону.

Зная распределение скоростей и температуры, можно рассчитать теплоотдачу с помощью интегральных уравнений теплового потока и импульса.

На основе эмпирических данных и вычислений был получен безразмерный комплекс – число Стантона

St º

При Pr = 1 и Prт = 1 – получаем аналогию переноса теплоты и кол-ва движения. На основе опытных данных получена формула

За определяющую принята температура жидкости вдали от тела Т0 (за исключениемPrс, выбираемого по температуре Тс – стенки). Определяющим размером является координата х, отсчитываемая от начала участка теплообмена.

Рис. а – ламинарное течение; б – смешанное (переходное); в — турбулентное течение

Посмотрим как изменяется коэффициент теплоотдачи вдоль пластины.

Если вся пластина занята турбулентным слоем (в случае высокой стенки турбулентности набегающего потока, плохой обтекаемости пластины и т.п.), то коэффициент a изменяется в соответствии с кривой 1. при наличии на передней части пластины ламинарного пограничного слоя коэффициент a изменяется по более сложному закону. В этом случае теплоотдачу необходимо рассчитывать отдельно для участков с различными режимами течения.

Основной закон конвективного теплообмена. Пограничный слой.

Обычно жидкие и газообразные теплоносители нагреваются или охлаждаются при соприкосновении с поверхностями твердых тел. Например, дымовые газы в печах отдают теплоту нагреваемым заготовкам, а в паровых котлах – трубам, внутри которых греется или кипит вода; воздух в комнате греется от горячих приборов отопления и т.д.

Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос теплоты осуществляется одновременно конвекцией и теплопроводностью. Под конвекцией теплоты понимается процесс переноса теплоты при перемещении макрочастиц жидкости или газа в пространстве из области с одной температурой в область с другой температурой. Конвекция возможна только в текучей среде, в которой перенос теплоты неразрывно связан с переносом самой среды.

Конвективный теплообмен между потоками жидкости или газа и поверхностью соприкасающегося с ним тела называется конвективной теплоотдачей или просто теплоотдачей.

При расчетах теплоотдачи используется закон Ньютона-Рихмана: тепловой поток в процессе теплоотдачи пропорционален площади поверхности теплоотдачи и разности температур между поверхностью тела и жидкости:

В процессе теплоотдачи независимо от направления теплового потока Q (от стенки к жидкости или наоборот) значение его принято считать положительным, поэтому разность температур, которая называется температурным напором ½tctж½ берется по абсолютной величине.

Коэффициент пропорциональности a называется коэффициентом теплоотдачи, он характеризует интенсивность процесса теплоотдачи. Численное значение его равно тепловому потоку от единичной поверхности теплообмена при разности температур поверхности и жидкости в 1 К.

Коэффициент теплоотдачи обычно определяют экспериментально, измеряя тепловой поток Q и разность температур Δt = tc – tж в процессе теплоотдачи от поверхности известной площади F. Затем из закон Ньютона-Рихмана рассчитывают α. При проектировании аппаратов (проведении тепловых расчетов) по этой формуле определяют одно из значений Q, F или Δt. При этом α находят по результатам обобщения ранее проведенных экспериментов.

Строго говоря, выражение справедливо лишь для дифференциально малого участка поверхности dF, т.е.

Поскольку коэффициент теплоотдачи может быть не одинаковым в различных точках поверхности тела.

Для расчета полного потока теплоты от всей поверхности нужно проинтегрировать обе части последнего уравнения по поверхности

Обычно температура поверхности постоянна tc = const, тогда

В расчетах используются понятия среднего по поверхности коэффициента теплоотдачи:

Коэффициент теплоотдачи α зависит от физических свойств жидкости и характера ее движения. Различают естественное и вынужденное движение (конвенцию) жидкости. Вынужденное движение создается внешним источником (насосом, вентилятором, ветром). Естественная конвенция возникает за счет теплового расширения жидкости, нагретой около теплоотдающей поверхности в самом процессе теплообмена.

Она будет тем сильнее, чем больше будет разность температур Δt = tc-tж и температурный коэффициент объемного расширения:

где u= 1/r – удельный объем жидкости.

Для газов, которые в большинстве случаев приближенно можно считать идеальными, коэффициент объемного расширения можно получить, воспользовавшись уравнением Клайперона (1.3):

Температурный коэффициент объемного расширения капельных жидкостей значительно меньше, чем газов.

Рассуждения о возникновении естественной конвенции справедливы и для случая охлаждения жидкости около холодной поверхности будет двигаться вниз, поскольку ее плотность будет больше, чем вдали от поверхности.

Из-за вязкого трения течение жидкости около поверхности затормаживается, поэтому, несмотря на то что наибольший прогрев жидкости, а соответственно и подъемная сила при естественной конвекции будут около теплоотдающей поверхности, скорость движения частиц жидкости, прилипших к самой поверхности, равна нулю .

Сила вязкого трения зависит от динамического коэффициента вязкости µ жидкости, измеряемого в Н·с/м 2 (Па·с). В уравнениях теплоотдачи чаще используют кинематический коэффициент вязкости (м 2 /с). Оба эти коэффициента характеризуют физические свойства жидкости, их значения приводятся в справочниках.

Пограничный слой

Рассмотрим процесс теплоотдачи от потока теплоносителя к продольно омываемой им пластине. Скорость и температура набегающего потока постоянны и равны ωж и tж (рис. 10.1).

Как уже отмечалось, частицы жидкости, непосредственно соприкасающиеся с поверхностью, адсорбируются («прилипают») к ней. Соприкасаясь с неподвижным слоем, тормозятся и более удаленные от поверхности слои жидкости. Зона потока, в которой наблюдается уменьшение скорости (ω

Дата добавления: 2015-11-26 ; просмотров: 2586 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

КОНВЕКТИВНЫЙ ТЕПЛООБМЕН

Теплообмен между движущейся средой и поверхностью твердого тела называется конвективным теплообменом или теплоотдачей. Кон­вективный теплообмен обусловлен совместным действием конвектив­ного и молекулярного переноса теплоты (теплопроводности). Под кон­вективным переносом теплоты в среде с неоднородным распределением температуры понимают перенос, осуществляемый макроскопическими элементами среды при их перемещении, движении.

Различают движение вынужденное и свободное. Под вынужденным движением или вынужденной конвекцией жидкости понимают движение, вызванное действием внешних сил, приложенных на границах системы, поля массовых сил, приложенных к жидкости внутри системы, или за счет кинетической энергии, сообщенной жидкости вне системы.

Свободное движение или свободная (естественная) конвекция жид­кости — движение под действием неоднородного поля массовых сил, приложенных к частицам жидкости внутри системы и обусловленных внешними полями (например, гравитационным).

Различают ламинарный и турбулентный режимы течения. При лами­нарном режиме характер течения спокойный, слоистый, без переме­шивания (от лат. lamina — полоска, слой). Ламинарное движение жид­кости — это движение, при котором возможно существование стационар­ных траекторий ее частиц, часто повторяющих профиль канала.

При турбулентном движении течение жидкости неупорядоченное, вихревое (от лат. turbulentus — бурный, беспорядочный), с хаотично
изменяющимися во времени траекториями частиц, при котором в потоке возникают нерегулярные пульсации скорости и давления.

Переход ламинарного режима течения в турбулентный определя­ется значением числа Рейнольдса, которое называется критическим ReKp = vvKp//v. Чем больше Re, тем больше силы инерции по сравне­нию с силами вязкости, тем больше турбулентность потока.

Режим движения жидкости, промежуточный между ламинарным и турбулентным, называется переходным.

Течение жидкости состоит из основного потока и пограничного слоя. На твердой поверхности вследствие действия сил вязкого трения образуется тонкий слой заторможенной жидкости. Частицы жидкости, непосредственно прилегающие к поверхности теплообмена, как бы при­липают к ней. С возрастанием сил вязкости и, следовательно, с умень­шением числа Re происходит утолщение пограничного слоя. Чем больше Re, тем тоньше пристеночная область течения, тем тоньше пограничный слой.

Несмотря на то что пограничный слой остается тонким (а измере­ние скоростей показывает, что толщина его порой составляет несколько молекулярных слоев жидкости), он играет большую роль в процессах конвективного теплообмена.

Различают динамический и тепловой пограничные слои. Динами­ческим пограничным слоем называют пограничный слой жидкости, характеризующийся большим градиентом продольной составляющей скорости.

Тепловой пограничный слой характеризуется большим градиентом температуры, под действием которого осуществляется поперечный пере­нос теплоты. В области, непосредственно прилегающей к поверхности теплообмена, температура изменяется от гж — температуры основного потока до температуры стенки Tc. За пределами теплового пограничного слоя температура однородна и там явление переноса теплоты отсут­ствует. Тепловой пограничный слой по толщине 8Х может совпадать или не совпадать с динамическим 8 (рис. 2.28, 2.29). Соотношения толщин теплового и динамического пограничных слоев определяются значением числа Pr = V/A.

Как было показано выше, расчет теплоотдачи, несмотря на боль­шую сложность процесса, проводится по формуле Ньютона — Рихмана

Рис. 2.28. Схема дина­мического погранич­ного слоя

Рис. 2.29. Схема теплово­го пограничного слоя

Достаточно простого вида

Вся сложность расчета состоит в определении коэффициента тепло­отдачи. Согласно (2.229), коэффициент теплоотдачи определяется как плотность теплового потока при температурном напоре, равном одному градусу. Перенос теплоты в вязком пограничном слое осуще в — ляется путем теплопроводности и в соответствии с законом Фурье определяется соотношением

Сравнивая (2.229) и (2.230), получим коэффициент теплоотдачи

В первом приближении можно принять градиент температуры в теп­ловом пограничном слое равным

В этом случае коэффициент теплоотдачи будет определяться соот­ношением

Величина а зависит от всех факторов, влияющих на сам процесс теплообмена. К ним относятся скорость движения жидкости, физические свойства теплоносителя, характеристики температурного поля и гидро­динамические характеристики потока, геометрическая форма Ф и раз­меры / поверхности теплообмена:

Ос =/( 3-Ю6 вдоль пластины устанавливается устойчивый турбулентный режим течения. При значе­ниях 8 • 104 8Т и в направлении оси Z равен 1.

На основании закона сохранения энергии при стационарном тепло­вом режиме алгебраическая сумма тепловых потоков, проходящих через все плоскости, ограничивающие выделенный объем Dx H 1, равна нулю:

Где т2.З — масса жидкости, входящей через поверхность 2-3.

Величина т2.3 может быть определена по разности расходов ти2

Поток массы через плоскость 1-2

При прохождении расстояния dx поток массы изменится на вели­

Тогда поток через поверхность 3-4 будет

Поток массы через плоскость 2-3 будет

Поток теплоты через поверхность 2-3 выразится соответственно уравнением f

62-3 = P^Wo Dyj dx. (д)

Подставив в уравнение теплового баланса (а) выражения (в), (г), (д), получим

PCpVi^f dy J dx + Qc dx ■ 1 = 0.

После подстановки qc и некоторых преобразований получим оконча­тельное выражение интегрального уравнения энергии для пограничного слоя:

В уравнении (2.241) верхний предел интегрирования заменен на 5Х, так как при H > 5Т температура потока постоянна и равна температуре невозмущенного потока f0. В этом случае стоящая под знаком интеграла разность температур обращается в нуль. Выражение (2.241) впервые получено Г. И. Кружшшным. Для динамического пограничного слоя решение задачи было получено Т. Карманом (1921). В случае пластины интегральное уравнение динамического слоя имеет аналогичное выра­жение :

— j wx (vv0 — W) dy = V-—. (2.242)

Теплоотдача при ламинарном пограничном слое. Решением уравнений (2.241) и (2.242) можно определить толщину теп­лового пограничного слоя 5Т и коэффициент теплоотдачи согласно (2.233). Для этого необходимо знать распределение скорости wx (у) и температу­ры Ty по толщине теплового пограничного слоя.

Из опыта известно, что распределение в ламинарном потоке имеет параболический характер и может быть удовлетворительно описано уравнением кубической параболы, в которое в качестве неизвестного входит толщина пограничного слоя 6:

Уравнение квадратичной параболы неприемлемо, так как не удовлет­воряется условие на поверхности: при у = 0 и>Л. = 0 и \>у = 0, так как в непосредственной близости от стенки инерционные силы равны нулю в связи с практически полным торможением потока (условие прилипания). В таком случае из уравнения движения для пограничного слоя (2.239) следует, что этого могло бы не быть, если бы в уравнение параболы входил член (у/5)2. В результате решения уравнения (2.243) совместно с граничными условиями (2.244) получим

Решим вторую часть задачи. Найдем распределение температуры T (у) по толщине теплового пограничного слоя.

Введем новую переменную — избыточную температуру 9 = T Te и

= T0 T считая температуру стенки Tc постоянной, не зависящей от х. В новом обозначении граничные условия запишутся:

В новых обозначениях форма интегрального уравнения энергии (2.241) не изменится

Для отыскания распределения температуры по толщине теплового пограничного слоя воспользуемся тем же методом, что и при опреде­лении распределения скорости. Вследствие подобия полей скорости и температуры примем параболическое распределение температуры

Вследствие идентичности граничных условий для скорости и избыточ­ной температуры (2.244) и (2.246) получим

З 90 , 1 S0 «=2ЇиЬ-ІГ

Окончательное распределение температуры в тепловом пограничном слое выражается уравнением

Из (2.248) и (2.242) и учитывая, что при у > 5 скорость равна постоян­ной величине w0 основного потока, а подынтегральное выражение ста­новится равным нулю, получаем выражение для определения толщины пограничного слоя

Решая последнее, получаем зависимость для толщины слоя

Или в безразмерном виде

Теперь, подставив полученные выражения скорости (2.245) и темпе­ратуры (2.248) в (2.241), вычислим интеграл в уравнении теплового потока в пределах теплового пограничного слоя, приняв 8Т ^ 8:

A v _ _ і 5 JL Оо ‘ 8Т

Считая 8T/8 ^ 1, вторым слагаемым можно пренебречь и считать

Правую часть уравнения (2.247) найдем из (2.248)

Подставив значение интеграла (2.252) и (2.253) в интегральное урав­нение теплового пограничного слоя (2.241), получим

W* (So — 3) dy = — 90w08 f ^

Или — vv0h3 8 — +2p282 ^

Подставляя в это уравнение значение толщины пограничного слоя согласно (2.249) и (2.250), получим

Решением этого уравнения будет

Показанное ранее соотношение толщин теплового и динамического пограничных слоев получило количественное выражение от Рг. Под­ставляя значение (2.251) в (2.255), получим окончательное выражение для 8Т:

8, = 4,64 _____ *__ .-. (2.256)

Определим коэффициент теплоотдачи

АЛ. Э0 = — X — и а, = — г — —. .

Величина градиента температуры на поверхности пластины легко определяется из уравнения (2.253):

Ду)у = о 2 8 , ‘ откуда получаем

Подставив 5Т согласно (2.256), получим окончательное уравнение для местного коэффициента теплоотдачи

Где С объединяет величины, не зависящие ОТ X.

Уравнение (2.258) легко привести к безразмерному виду, зная, что Nu* = OlXX/X:

Nu, = 0,331Re°-5Pr°-33. (2.260)

Среднее значение а для пластины длиной / определяется путем формального осреднения местного значения: І і

Где а і — местный коэффициент теплоотдачи на конце пластины длиной /.

Согласно (2.261) среднее значение а будет

А = 0,662 у >/Re, f/Pr.

В формуле (2.263) за определяющую температуру принята средняя температура жидкости, а за определяющий размер — длина пластины вдоль потока. Анализ полученной зависимости для а позволяет выявить роль основных факторов, влияющих на теплообмен.

Как видно из формулы (2.259), коэффициент теплоотдачи уменьшается с увеличением х. Это объясняется тем, что температурный напор £0 — Tc При постоянной температуре поверхности плиты не меняет своего значения, а при увеличивающейся толщине 5х(х) пограничного слоя градиент температуры падает с увеличением х.

Коэффициент теплоотдачи зависит и от направления теплового потока, зависит от того, нагревается жидкость или охлаждается. Градиент температуры в пограничном слое при нагревании больше, чем при охлаждении. Как показывает опыт и анализ влияния градиента температуры в случае нагревания и в случае охлаждения жидкости вдоль пластины, коэффициент теплоотдачи при нагревании капельных жид­костей больше, чем при охлаждении.

По предложению М. А. Михеева, зависимость коэффициента тепло­отдачи от направления теплового потока учитывается введением в кри­териальное уравнение множителя (Ргж/Ргс)0’25, где Prf относится к жидкости при температуре стенки. При нагревании жидкости эта поправка больше единицы, при охлаждении — меньше единицы.

Окончательное расчетное уравнение теплоотдачи при течении жидкости вдоль плоской поверхности:

Для газов Рг мало зависит от температуры, поэтому формула (2.264) может быть упрощена. Так, для воздуха, приняв Рг = 0,72, получим расчетное уравнение

Следует отметить, что наличие необогреваемого участка в начале плиты влияет на формирование динамического и теплового пограничных слоев. Это следует учитывать особой поправкой, которая может быть найдена в справочной литературе.

Приведенные зависимости, полученные на основе аналитического решения задачи теплообмена при ламинарном пограничном слое, совпадают с экспериментальными результатами обобщенных данных при постоянных физических свойствах жидкости (рис. 2.33). Такое совпадение свидетельствует о широких возможностях теории погранич­ного слоя при решении задач конвективного теплообмена. В этом разделе показан путь решения и анализ полученных результатов одной из
простых задач теплообмена. Для более сложных случаев мы огра­ничимся анализом результатов, полученных опытным путем.

Теплоотдача при турбулентном пограничном слое. Аналитический расчет теплоотдачи в турбулентном слое представляет большие трудности вследствие сложности самого движения и сложности механизма переноса количества движения и теплоты. Особенностью турбулентного течения является пульсационный характер движения. На рис. 2.34 показана осциллограмма колебаний скорости в фикси­рованной точке турбулентного потока. Отклонение мгновенной скорости w’ от средней w называется пульсацией. Наличие пульсаций как бы увеличивает вязкость, и тогда полная вязкость турбулентного потока будет суммой двух величин — молекулярной вязкости и дополнитель­ной турбулентной. Турбулентная вязкость рф не является физическим параметром теплоносителя, как коэффициент динамической вязкости, и характеризует интенсивность переноса количества движения в турбу­лентном потоке. Аналогично вязкости в уравнении движения, в дифферен­циальном уравнении энергии дополнительно к молекулярной тепло­проводности появляется турбулентная теплопроводность їгр, характе­ризующая турбулентный перенос теплоты и также не являющаяся физическим параметром теплоносителя.

Аналитическое решение дифференциальных уравнений становится невозможным вследствие трудностей, связанных с определением пульса- циоиных характеристик и их связи с осредненными параметрами потока.

Теоретическое исследование теплоотдачи при турбулентном движе­нии развивается на базе полуэмпирической теории турбулентности Прандтля или на базе гидродинамической теории теплообмена Рейнольдса, основанной на аналогии между процессами турбулентного переноса количества движения и теплоты. Рассмотрение этих вопросов не входит в задачи настоящего курса.

В заключение приведем расчетные формулы, полученные методом гидродинамической аналогии для расчета теплообмена в турбулент­ном потоке:


источники:

http://helpiks.org/6-262.html

http://msd.com.ua/teplotexnika/konvektivnyj-teploobmen-2/