Уравнение теплопроводности и его частные случаи

Дифференциальное уравнение теплопроводности и его частные случаи

В трехмерной системе координат дифференциальное уравнение теплопроводности имеет вид

где а=λ/(сγ) – температуропроводность твердого тела,м 2 /с.

Выражение в круглых скобках правой части называется оператором Лапласа и обозначается

Рассмотрим частные случаи этого уравнения:

1) тепловой поток распространяется только вдоль оси х, тогда

2) в выделенном элементарном объеме твердого тела температура во времени не изменяется, т.е.

Называемое уравнением Лапласа, оно характеризует собой распределение температуры в элементарном объеме твердого тела при стационарном процессе переноса тепла (когда температура во времени во всех точках выделенного объема твердого тела остается постоянной).

3) внутренняя энергии выделенного элементарного объема твердого тела в точке с координатами х, yи zсуществует внутренний источник, выделяющий (или поглощающий) в единице объема за единицу времени количество тепла, равное А(х, y, z, τ), то дифференциальное уравнение теплопроводности имеет вид

4) теплопроводность твердого тела изменяется в рассматриваемом диапазоне температур, тогда

5) когда источник тепла перемещается со скоростью, компоненты которой равны Vx, Vy, Vz, тогда

Представленные уравнения относятся к прямоугольной системе координат.

Дифференциальные уравнения теплопроводности в сферических и цилиндрических координатах имеют следующий вид:

и

Краевые условия

Под краевыми условиями понимается совокупность начальных и граничных условий.

Начальным условием называется температурное поле в твердом теле в тот момент, с которого ведется отсчет времени температурного воздействия.

Граничным условием называется условие, определяющее процесс теплообмена на границе. Понятие «граница» включает в себя внешние поверхности, подверженные тепловому воздействию, и внутренние, расположенные на некотором удалении от внешних. Граничные условия складываются из сведений об условиях теплообмена на границе и сведений об изменении параметров источника теплового воздействия.

Различают четыре рода граничных условий:

1) если известен закон изменения температуры нагреваемой поверхности во времени

Частным случаем является постоянства температуры на поверхности, подверженной тепловому воздействию

2) если известна закономерность изменения во времени удельного теплового потока, поступающего к поверхности твердого тела

или

Индекс х=+0 указывает на то, что градиент температуры относится к точке тела, расположенной в непосредственной близости от поверхности.

Частным случаем имеет место при постоянстве удельного теплового потока

3) Если заданы температура источника теплового воздействия и интенсивность теплообмена на поверхности (теплоносителями являются жидкости и газы).

где α– коэффициент теплоотдачи, Вт/(м 2 К)

При установившемся режиме теплообмена коэффициент теплоотдачи можно принять постоянным.

Если нагрев твердого тела происходит за счет лучеиспускания, тогда

где , Вт/(м 2 К)

b(T) – коэффициент, зависящий от температуры источника и приемника лучистой энергии, К 3

— приведенный коэффициент лучеиспускания, Вт/м 2 ∙(К) 4

ϭ – постоянная Стефана-Больцмана, равная 5,67∙10 -8 Вт/м 2 К 4

ε – относительная излучательная способность (степень черноты) твердого тела.

4) при соприкосновении двух твердых тел с разными теплофизическими свойствами.

Во всех этих уравнениях в правых частях удельный тепловой поток, отводимый внутрь твердого тела от нагреваемой поверхности, в правой — математически сформулирована закономерность поступления тепла от источника к поверхности твердого тела.

Дата добавления: 2018-05-10 ; просмотров: 1850 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Дифференциальное уравнение теплопроводности

При решении задач, связанных с нахождением температурного по­ля, необходимо иметь дифференциальное уравнение тепло­проводности.

Температурное поле – совокупность значений температур во всех точках рассматриваемого пространства для каждого момента времени .

Для упрощения вывода этого дифференциального уравнения сде­ланы следующие допущения:

– физические параметры постоянны;

– деформация рассматриваемого объема, связанная с изменением температуры, является очень малой величиной по сравнению с самим объемом;

– внутренние источники теплоты в теле распределены равномерно.

В основу вывода дифференциального уравнения теплопроводности положен закон сохранения энергии в формулировке:

количество теплоты dQ, введенное в элементарный объем извне за время теп­лопроводностью, а также от внутренних источников, равно изменению внутренней энергии или энтальпии вещества (в зависимости от рассмо­трения изохорного или изобарного процесса), содержащегося в элементарном объеме.

(*)

где dQ1 – количество теплоты, Дж, введенное в элементарный объем теплопроводностью за время ;

dQ2 – количество теплоты, Дж, которое за время выделилось в элементарном объем за счет внутренних источников;

dQ – изменение внутренней энергии или энтальпии вещества, содержащегося в элементарном объеме , за время dτ.

Для нахождения составляющих выделим в теле элементарный параллелепипед со сторонами dx, dy, dz. Параллелепипед расположен так, чтобы его грани были параллельны соответствующим координатным плоскостям.

Количество теплоты, которое подводится к граням элементарного объема за время в направлении осей Оx, Оy, Оz обозначим соответственно dQx, dQy, dQz.

Количество теплоты, которое будет отводиться через противоположные грани в тех же направлениях, обозначим соответственно dQx+dx, dQy+dy, dQz+dz.

Количество теплоты, подведенное к грани dydz=dF в направлении оси Ох за время , составляет ,

где qx – проекция плотности теплового потока на направление нормали к указанной грани.

Количество теплоты, отведенное через противоположную грань элементарного параллелепипеда в направлении оси Ох

.

Разница количеств теплоты, подведенного к элементарному параллелепипеду и отведенного от него за время в направлении оси Ох

Функция является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора

Если ограничиться двумя первыми членами ряда:

Аналогично можно найти количество теплоты, подводимое к элементарному объему в направлениях двух других координатных осей Oy и Oz.

Количество теплоты dQ, подводимое теплопроводностью к рассматриваемому объему, будет равно

Обозначим через , Вт/м 3 , ко­личество теплоты, выделяемое внутренними источниками в единице объема в единицу времени.

Тогда

Третья составляющая уравнения (*) найдется в зависимости от характера термодинамического процесса изменения системы.

В случае рассмотрения изохорного процесса вся теплота, под­веденная к элементарному объему, уйдет на изменения внутренней энер­гии вещества, заключенного в этом объеме, т.е.

где – изохорная теплоемкость единицы массы, Дж/(кг·К);

ρ – плотность вещества, кг/м 3 .

Подставляя полученные выражения в уравнение (*), получим

,

Проекции вектора плотности теплового потока на координатные оси Ох, Оу, Оz определяются законом Фурье:

; ; .

где λ – коэффициент теплопроводности (физический параметр вещества, характеризующий способность проводить теплоту), Вт/(м∙°С).

Подставляя полученные выражения проекций вектора плотности теплового потока в уравнение (*), опуская индекс при с, ипринимая теплофизические характеристики постоянными, получим

(***)

Выражение (***) называется дифферен­циальным уравнением теплопроводности. Оно устанавливает связь меж­ду временнЫм и пространственным изменением температуры в любой точке тела.

и

Тогда выражение (***) имеет вид:

Выражение (***) в цилиндрической системе координат:

где r – радиус-вектор;

φ – полярный угол;

Коэффициент пропорциональности а, м 2 /с, назы­вается коэффициентом температуропроводности и явля­ется физическим параметром вещества.

Он характеризует скорость изменения темпера­туры, т.е. являет­ся мерой теплоинерционных свойств тела. Поэтому при прочих равных условиях выравнивание температур во всех точках пространства будет происходить быстрее в том теле, которое обладает бόльшим коэффи­циентом температуропроводности.

Коэффициент температуропроводно­сти зависит от природы вещества.

Например, жидкости и газы обладают большой тепловой инерционностью и, следовательно, малым коэффи­циентом температуропроводности.

Металлы обладают малой тепловой инерционностью, т.к. они имеют большой коэффициент температу­ропроводности.

Если система тел не содержит внутренних источ­ников теплоты (qυ=0), то

Если имеются внутренние источники теплоты, но температурное поле соответствует стационарному состоянию, т.е. , то

При рассмотрении изобарного процесса вся теплота, подведен­ная к объему, уйдет на изменение энтальпии вещества, заключенного в этом объеме:

(**)

Если рассматривать энтальпию единицы объема как , то

где сp – изобарная теплоемкость единицы массы, Дж/(кг·К).

В итоге (**) имеет вид:

|следующая лекция ==>
СПОСОБЫ ПЕРЕНОСА ТЕПЛОТЫ|Условия однозначности для процессов теплопроводности. Дифференциальное уравнение теплопроводности описывает явление теплопро­водности в самом общем виде

Дата добавления: 2016-02-09 ; просмотров: 4535 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://helpiks.org/6-87628.html