Уравнение теплопроводности с источником теплоты

Дифференциальное уравнение теплопроводности с источником теплоты

При выводе уравнения теплопроводности (3.32) предполагалось отсутствие внутренних источников или стоков теплоты. Однако есть среды, внутри которых могут протекать те или иные процессы с выделением (источник) или поглощением (сток) теплоты. К таким средам, относятся вода, лед, снег, пар, а также металлы, бетон, химические и другие вещества. Процесс испарения воды, таяния льда и снега сопровождается поглощением теплоты, а обратный ему процесс — замерзание воды — выделением теплоты. При этом теплота источника или стока может зависеть не только от координат тела, но и от его температуры и ее распределения в теле.

При наличии источника или стока уравнение теплового баланса (3.27) должно быть дополнено еще одним членом, учитывающим их теплоту, а именно:

где Q8 — количество теплоты, выделенное или поглощенное средой в объеме ¶xyz за время dτ; W — интенсивность источника или стока.

С учетом дополнительного члена (3.40) уравнение теплопроводности (3.32) запишем в следующем виде:

(3.42)

В том случае, когда в среде имеют место поглотители (сток) тепловой энергии, перед вторым слагаемым правой части уравнения следует ставить знак минус.

Условия однозначности

Полученное выше дифференциальное уравнение теплопроводности описывает явление передачи теплоты в самом общем виде. Чтобы решить с помощью этого уравнения конкретную задачу, отличающуюся какими-либо условиями от сотни других задач, необходимо сформулировать для нее еще и так называемые условия однозначности – совокупность всех условий, которыми задача однозначно определяется (само уравнение теплопроводности или теплового баланса в них не входит).

Условия однозначности состоят:

1) из геометрических условий, характеризующих форму и размеры тела или системы тел, в которых протекает тепловой процесс;

2) из физических условий, характеризующих физические свойства рассматриваемой среды и тела;

3) из временных условий, характеризующих распределение температуры в рассматриваемой среде или теле в начальный момент времени. По этой причине эти условия называют еще и начальными условиями;

4) из граничных условий, характеризующих взаимодействие рассматриваемого тела с окружающей его средой.

Совокупность последних двух условий (начальных и граничных) называется краевыми условиями, так как первые находятся на начальном «краю» времени, а вторые – на геометрических «краях» тела.

Начальные условия заключаются в задании распределения поля значений температуры в начальный момент времени (τ=0), т.е. предшествующий расчетному. Они должны быть заданы в виде функций:

1) tτ = 0 = f1 (x, у, z) — для пространственной задачи,

В большинстве случаев эти условия могут быть заданы с достаточной определенностью в виде конкретной функции, таблицы или в форме графика (например, распределение температуры по толщине слоя воды).

Граничные условия – тепловые условия у поверхности тела, которые задаются в более сложном виде. При решении задач теплопроводности принято различать четыре наиболее часто встречающихся способа задания граничных условий, так называемые граничные условия первого, второго, третьего, четвертого и пятого рода.

1. Граничные условия первого рода заключаются в том, что задается температура во всех точках поверхности тела в течение времени τ:

где X, Y, Z — координаты поверхности.

2. Если количество теплоты, поступающей извне в тело, известно (или задано), то такое граничное условие называют граничным условием второго рода и оно заключается в том, что задается удельный тепловой поток по закону Фурье через поверхность тела в течение времени τ:

Как и в предыдущем случае, эта функция может быть произвольной и непрерывной:

3. Граничные условия третьего рода заключаются в задании температуры поверхности тела и окружающей его среды и задании теплообмена (коэффициента теплопередачи) между поверхностью этого тела и окружающей средой по закону Ньютона. Таким образом, количество теплоты, отдаваемое (или получаемое) единицей поверхности с температурой tп за единицу времени в окружающую среду с температурой tс, прямо пропорционально разности температуры поверхности и окружающей среды:

Количество теплоты, отдаваемое (или получаемое) поверхностью в окружающую среду и определяемое по формуле (3.46), должно быть равно количеству теплоты, подводимому к этой поверхности за счет теплопроводности, которое определяется по закону Фурье (3.44). Приравняв эти потоки, получим новое выражение для задания граничных условий третьего рода:

где — градиент температуры у поверхности и по нормали к ней.

В условии (3.47) должны быть заданы коэффициент теплоотдачи a и температура окружающей тело среды tс.

4. Граничные условия четвертого рода заключаются в том, что задается равенство температуры на поверхности раздела двух тел или тела с окружающей средой при подходе к ней с двух сторон, а также удельных тепловых потоков по закону Фурье в предположении, что между этими телами осуществляется идеальный контакт.

5. При наличии на поверхности тела слоя, имеющего очень высокую теплопроводность, например, слоя ветрового перемешивания в водохранилище, и заданного количества теплоты, поступающего в слой извне, имеем граничное условие пятого рода.

Практически важным является граничное условие четвертого рода при наличии на границе источника (стока) теплоты, возникающего от изменения агрегатного состояния, например, при промерзании грунта.

Возможны и некоторые другие граничные условия; так, часто встречается совмещение граничных условий второго и третьего родов, которое производится путем замены действительной температуры окружающей среды эквивалентным значением.

Методы решения задач

Для решения задачи о распределении температуры в пределах заданного поля и в расчетный период времени с помощью полученных выше уравнений помимо краевых условий необходимо располагать методом решения этих уравнений.

За 175 лет со времени выхода в свет «Аналитической теории тепла» — классической работы Фурье, теория теплообмена обогатилась рядом таких методов. Первый из них был предложен самим Фурье и известен как «решения в рядах Фурье».

Все эти методы могут быть распределены по следующим группам: аналитические, конечных разностей (графический, численный), исследования температурных полей на моделях (физический), аналоговых и счетных машин.

К настоящему времени наиболее разработаны методы решения уравнения теплопроводности для одномерных задач, как раз тех задач, с которыми преимущественно имеют дело гидрологи и гидротехники.

Аналитические методы решения уравнения теплопроводности состоят в том, что, пользуясь полной математической формулировкой задачи, находят ее аналитическое решение. При этом следует искать уже готовое решение, а не новое. Для этого необходимо обратиться, прежде всего, к монографиям Г.Карслоу и Д.Егер, А. В. Лыкова и др., в которых приведен набор решений различных задач. При отсутствии готового решения целесообразно попытаться найти его в виде суммы (комбинации) имеющихся решений, пользуясь известным принципом суперпозиции. Достоинством этих методов является точность решений; она зависит лишь от точности закладываемых исходных данных и точности производимых вычислений. При решении задачи возможно использование ЭВМ. Температура рассчитывается для любой точки тела и для любого момента времени независимо от расчетов за предшествующие интервалы времени. Недостатком является ограниченность круга задач, для которых могут быть получены решения.

Метод конечных разностей состоит в том, что в дифференциальном уравнении теплопроводности, которое следует решить, все бесконечно малые разности (дифференциалы) заменяются конечными, но малыми разностными величинами. Следовательно, истинное непрерывное в пространстве распределение температуры и непрерывный во времени ход температуры заменяется приближенными прерывистыми значениями, осредняющими температуру конечных малых участков тела ∆x, ∆y, ∆z и малых промежутков времени ∆τ. Достоинством метода является возможность решить весьма сложные задачи, в том числе для тел сложной формы. Метод позволяет использование ЭВМ. К недостаткам метода относятся: отсутствие общего решения задачи; необходимость производства вычислений для всего тела и для всего периода, предшествующего моменту времени, для которого производится вычисление температуры; трудоемкость метода.

Метод исследования температурных полей на моделях (физическое моделирование) является экспериментальным методом решения теплотехнических задач. Он опирается на теорию подобия и применяется в тех случаях, когда аналитические и другие методы не могут дать ответ. Суть метода состоит в том, что исследование процессов и явлений, протекающих в изучаемом объекте, заменяется исследованием их протекания на его модели. Данные, полученные на модели, позволяют судить о тех же процессах и явлениях, протекающих на объекте. Существенным достоинством данного метода является возможность решения сложных задач и исследования недоступных объектов.

Метод аналоговых и счетных машин (метод аналогий) состоит в том, что решение тепловой задачи заменяют уже имеющимся решением задачи другой физической сущности, в которой уравнения и краевые условия совпадают с первой задачей, хотя размерности у них различны (метод ЭТА).

Теплопроводность через сферическую оболочку

Теплопроводность через сферическую оболочку

Теплопроводность через сферическую оболочку

Объектом исследования является сферическая оболочка заданной толщины с переменным коэффициентом теплопроводности и с заданными значениями температуры на внутренней и внешней поверхностях оболочки.

Цель проекта — определить распределение температуры внутри оболочки.

В процессе работы выведено дифференциальное уравнение теплопроводности применительно к данным конкретным условиям задачи и получено решение этого уравнения в виде функции T(r), где T — температура в произвольной точке оболочки а r — расстояние между этой точкой и геометрическим центром оболочки. Разработана программа TSO, рассчитывающая функцию T(r) и строящая её график для различных задаваемых пользователем параметров задачи.

Результатом исследования является аналитическое решение уравнения теплопроводности T(r) и графическая иллюстрация этого решения, изображаемая на экране компьютера программой TSO.

Полученная в проекте функция T(r) и разработанная программа TSO могут быть полезными для разработчиков химических и ядерных реакторов, котлов тепловых станций и различных сосудов в области промышленной и бытовой техники.

Курсовой проект выполнен в текстовом редакторе Microsoft WORD 7.0.

В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.

Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами, сообщают им часть своей кинетической энергии. Этот процесс постепенно распространяется по всему телу. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его геометрических размерах, а также от разности температур между различными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему; кроме того, трудности возникают с увеличением сложности конфигурации системы.

Целью данного курсового проекта является нахождение закона распределения температуры в веществе, которым заполнено пространство между двумя сферами.

2 Основные положения теплопроводности

2.1 Температурное поле

Теплопроводность представляет собой процесс распространения энергии между частицами тела, находящимися друг с другом в соприкосновении и имеющими различные температуры.

Рассмотрим нагрев какого-либо однородного и изотропного тела. Изотропным называют тело, обладающее одинаковыми физическими свойствами по всем направлениям. При нагреве такого тела температура его в различных точках изменяется во времени и теплота распространяется от точек с более высокой температурой к точкам с более низкой. Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры Tкак в пространстве, так и во времени:

,———(2.1)

где — координаты точки;

Эта функция определяет температурное поле в рассматриваемом теле. В математической физике температурным полем называют совокупность значений температуры в данный момент времени для всех точек изучаемого пространства, в котором протекает процесс.

Если температура тела есть функция координат и времени, то температурное поле называют нестационарным, т. е. зависящим от времени:

.———(2.2)

Такое поле отвечает неустановившемуся тепловому режиму теплопроводности.

Если температура тела есть функция только координат и не изменяется с течением времени, то температурное поле тела называют стационарным:

.———(2.3)

Уравнения двухмерного температурного поля для режима стационарного:

;———(2.4)

.———(2.5)

На практике встречаются задачи, когда температура тела является функцией одной координаты, тогда уравнения одномерного температурного поля для режима стационарного:

;—-(2.6)

.—-(2.7)

Одномерной, например, является задача о переносе теплоты в стенке, у которой длину и ширину можно считать бесконечно большой по сравнению с толщиной.

2.2 Градиент температуры

Если соединить точки тела с одинаковой температурой, то получим поверхность равных температур, называемую изотермической. Изотермические поверхности между собой никогда не пересекаются. Они либо замыкаются на себя, либо кончаются на границах тела.

Рассмотрим две близкие изотермические поверхности с температурами T и T + Δ T(рисунок 2.1).

Перемещаясь из какой либо точки А, можно обнаружить, что интенсивность изменения температуры по различным направлениям неодинакова. Если перемещаться по изотермической поверхности, то изменения температуры не обнаружим. Если же перемещаться вдоль какого-либо направления P, то наблюдаем изменение температуры. Наибольшая разность температур на единицу длины будет в направлении нормали к изотермической поверхности. Предел отношения изменения температуры к расстоянию между изотермами по нормали , когда стремится к нулю, называют градиентом температуры.

———(2.8)

Градиент температуры есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный частной производной от температуры по этому направлению. За положительное направление градиента принимается направление возрастания температур.

2.3 Основной закон теплопроводности

Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю.

Связь между количеством теплоты , проходящим за промежуток времени через элементарную площадку dS, расположенную на изотермической поверхности, и градиентом температуры устанавливается гипотезой Фурье, согласно которой

.—-(2.9)

Минус в правой части показывает, что в направлении теплового потока температура убывает и grad T является величиной отрицательной. Коэффициент пропорциональности называется коэффициентом теплопроводности или более кратко — теплопроводностью. Справедливость гипотезы Фурье подтверждено многочисленными опытными данными, поэтому эта гипотеза в настоящее время носит название основного уравнения теплопроводности или закона Фурье.

Отношение количества теплоты, проходящего через заданную поверхность, ко времени называют тепловым потоком. Тепловой поток обозначают q и выражают в ваттах (Вт):

.———(2.10)

Отношение теплового потока dq через малый элемент изотермической поверхности к площади dS этой поверхности называют поверхностной плотностью теплового потока (или вектором плотности теплового потока), обозначают j и выражают в ваттах на квадратный метр (Вт/м2):

.————(2.11)

Вектор плотности теплового потока направлен по нормали к изотермической поверхности в сторону убывания температуры. Векторы j и grad T лежат на одной прямой, но направлены в противоположные стороны.

Тепловой поток q, прошедший сквозь произвольную поверхность S, находят из выражения

.———(2.12)

Количество теплоты, прошедшее через эту поверхность в течение времени t, определяется интегралом

.———(2.13)

Таким образом, для определения количества теплоты, проходящего через какую-либо произвольную поверхность твердого тела, необходимо знать температурное поле внутри рассматриваемого тела. Нахождение температурного поля и составляет основную задачу аналитической теории теплопроводности.

2.4 Дифференциальное уравнение теплопроводности

Изучение любого физического процесса связано с установлением зависимости между величинами, характеризующими данный процесс. Для сложных процессов, к которым относится передача теплоты теплопроводностью, при установлении зависимостей между величинами удобно воспользоваться методами математической физики, которая рассматривает протекание процесса не во всем изучаемом пространстве, а в элементарном объеме вещества в течение бесконечно малого отрезка времени. Связь между величинами, участвующими в передаче теплоты теплопроводностью, устанавливается дифференциальным уравнением теплопроводности. В пределах выбранного элементарного объема и бесконечно малого отрезка времени становится возможным пренебречь изменением некоторых величин, характеризующих процесс.

При выводе дифференциального уравнения теплопроводности принимаются следующие допущения:

внутренние источники теплоты отсутствуют;

среда, в которой распространяется тепло, однородна и изотропна;

используется закон сохранения энергии, который для данного случая формулируется так: разность между количеством теплоты, вошедшей вследствие теплопроводности в элементарный параллелепипед за время dt и вышедшей из него за тоже время, расходуется на изменение внутренней энергии рассматриваемого элементарного объема.

Выделим в среде элементарный параллелепипед с ребрами (рисунок 2.2). Температуры граней различны, поэтому через параллелепипед проходит теплота в направлении осей . Через площадку за время dt, согласно уравнению Фурье, проходит количество теплоты:

———(2.14)

(grad T взят в виде частной производной, т. к. предполагается зависимость температуры не только от x, но и от других координат и времени).

Через противоположную грань на расстоянии dz отводится количество теплоты, определяемое из выражения:

,———(2.15)

где — температура второй грани, а величина определяет изменение температуры в направлении z.

Последнее уравнение можно представить в другом виде:

.—-(2.16)

Итак, приращение внутренней энергии в параллелепипеде за счёт потока тепла в направлении оси z равно:

.———(2.17)

Приращение внутренней энергии в параллелепипеде за счёт потока тепла в направлении оси y выразится аналогичным уравнением:

,———(2.18)

а в направлении оси x:

.———(2.19)

Полное приращение внутренней энергии в параллелепипеде:

.—-(2.20)

С другой стороны, согласно закону сохранения энергии:

,———(2.21)

где — объем параллелепипеда;

— масса параллелепипеда;

c — удельная теплоемкость среды;

— плотность среды;

— изменение температуры в данной точке среды за время dt.

Левые части уравнения (2.20) и (2.21) равны, поэтому:

,—-(2.22)

.———(2.23)

Величину называют оператором Лапласа и обычно обозначают сокращенно ; величину называют температуропроводностью и обозначают буквой a. При указанных обозначениях дифференциальное уравнение теплопроводности принимает вид:

.———(2.24)

Уравнение (2.24) называется дифференциальным уравнением теплопроводности (или дифференциальным уравнением Фурье) для трехмерного нестационарного температурного поля при отсутствии внутренних источников теплоты. Оно является основным при изучении вопросов нагревания и охлаждения тел в процессе передачи теплоты теплопроводностью и устанавливает связь между временным и пространственным изменениям температуры в любой точке поля.

Температуропроводность является физическим параметром вещества и имеет единицу м2/c. В нестационарных тепловых процессах a характеризует скорость изменения температуры.

Из уравнения (2.24) следует, что изменение температуры во времени для любой точки тела пропорционально величине a. Поэтому при одинаковых условиях быстрее увеличивается температура у того тела, которое имеет большую температуропроводность.

Дифференциальное уравнение теплопроводности с источником теплоты внутри тела имеет вид:

,———(2.25)

гдеqV — удельная мощность источника, то есть количество выделяемой теплоты в единице объёма вещества в единицу времени.

Это уравнение записано в декартовых координатах. В других координатах оператор Лапласа имеет иной вид, поэтому меняется и вид уравнения. Например, в цилиндрических координатах дифференциальное уравнение теплопроводности с внутренним источником теплоты таково:

,—-(2.26)

гдеr — радиус-вектор в цилиндрической системе координат;

— полярный угол.

2.5 Краевые условия

Полученное дифференциальное уравнение Фурье описывает явления передачи теплоты теплопроводностью в самом общем виде. Для того чтобы применить его к конкретному случаю, необходимо знать распределение температур в теле или начальные условия. Кроме того, должны быть известны:

геометрическая форма и размеры тела,

физические параметры среды и тела,

граничные условия, характеризующие распределение температур на поверхности тела, или взаимодействие изучаемого тела с окружающей средой.

Все эти частные особенности совместно с дифференциальным уравнением дают полное описание конкретного процесса теплопроводности и называются условиями однозначности или краевыми условиями.

Обычно начальные условия распределения температуры задаются для момента времени t = 0.

Граничные условия могут быть заданы тремя способами.

Граничное условие первого рода задается распределением температуры на поверхности тела для любого момента времени.

Граничное условие второго рода задается поверхностной плотностью теплового потока в каждой точке поверхности тела для любого момента времени.

Граничное условие третьего рода задается температурой среды, окружающей тело, и законом теплоотдачи между поверхность тела и окружающей средой.

Решение дифференциального уравнения теплопроводности при заданных условиях однозначности позволяет определить температурное поле во всем объеме тела для любого момента времени или найти функцию .

2.6 Теплопроводность через шаровую стенку

С учётом описанной в разделах 2.1 — 2.5 терминологии задачу данной курсовой работы можно сформулировать так. Постоянный тепловой поток направлен через шаровую стенку, причем источником теплоты является внутренняя сфера радиусом R1. Мощность источника P постоянна. Среда между граничными сферами изотропна, поэтому её теплопроводность χ является функцией одной переменной — расстояния от центра сфер (радиуса) r. По условию задачи . Вследствие этого температура среды тоже является в данном случае функцией одной переменной — радиуса r: T = T(r), а изотермические поверхности это концентрические сферы. Таким образом искомое температурное поле — стационарное и одномерное, а граничные условия являются условиями первого рода: T(R1) = T1, T(R2) = T2.

Из одномерности температурного поля следует, что плотность теплового потока j так же, как теплопроводность и температура, являются в данном случае функциями одной переменной — радиуса r. Неизвестные функции j(r) и T(r) можно определить одним из двух способов: или решать дифференциальное уравнение Фурье (2.25), или использовать закон Фурье (2.11). В данной работе избран второй способ. Закон Фурье для исследуемого одномерного сферически симметричного температурного поля имеет вид:

.————(2.27)

В этом уравнении учтено, что вектор нормали к изотермической поверхности n параллелен радиус-вектору r. Поэтому производная может быть записана как.

Определим зависимость плотности теплового потока j от r. Для этого сначала вычислим тепловой поток q через сферу произвольного радиуса r > R.

.————(2.28)

В частности, тепловой поток q1 через внутреннюю сферу радиусом R1 и тепловой поток q2 через наружную сферу радиусом R2 равны

———(2.29)

Все эти три потока создаются одним и тем же источником мощностью P. Поэтому все они равны P и поэтому равны между собой.

.————(2.30)

С учётом (2.28) и (2.29) это равенство можно записать в виде:

.———(2.31)

,———

получаем искомую зависимость плотности теплового потока j от радиуса r:

,————(2.32)

где C1 — это константа, определяемая формулой

.———(2.33)

Физический смысл полученного результата достаточно ясен: это известный закон обратных квадратов, характерный для задач со сферической симметрией.

Теперь, так как функция j(r) известна, можно рассматривать уравнение (2.27) как дифференциальное уравнение относительно функции T(r). Решение этого уравнение и даст искомое распределение температур. Подставив в (2.27) выражение (2.32) и заданную функцию , получим следующее дифференциальное уравнение:

.————(2.34)

Данное уравнение решается методом разделения переменных:

.————

Интегрирование этого выражения даёт:

———

Итак, функция T(r) имеет вид:

.———(2.35)

Константы C1 и C2 можно определить из граничных условий T(R1) = T1,
T(R2) = T2. Подстановка этих условий в (2.35) даёт линейную систему двух уравнений с двумя неизвестными C1 и C2:

.———(2.36)

Вычитая из первого уравнения второе, получим уравнение относительно C1:

,———

.———(2.37)

С учётом этого выражение (2.35) можно записать в виде:

.———(2.38)

Теперь первое граничное условие T(R1) = T1 даёт:

,———(2.39)

откуда следует выражение для константы C2:

.———(2.40)

Подстановка (2.40) в (2.39) даёт окончательное выражение для искомой функцииT(r):

.———(2.41)

Зная функцию T(r), можно из закона Фурье

————

определить и окончательное выражение для плотности теплового потока j как функции от радиуса r:

. ———(2.42)

Интересно отметить, что распределение температур не зависит от коэффициента b, но зато плотность потока пропорциональна b.

В результате проделанной работы выведено дифференциальное уравнение теплопроводности применительно к данным конкретным условиям задачи и получено решение этого уравнения в виде функции T(r). Разработана программа TSO, рассчитывающая функцию T(r) и строящая её график для различных задаваемых пользователем параметров задачи.

Лекция 4. Вывод уравнения теплопроводности

При построении математической модели распространения тепла в стержне сделаем следующие предположения:
1) стержень сделан из однородного проводящего материала с плотностью ρ;
2) боковая поверхность стержня теплоизолирована, то есть тепло может распространяться только вдоль оси ОХ;
3) стержень тонкий — это значит, что температура во всех точках любого поперечного сечения стержня одна и та же.

Рассмотрим часть стержня на отрезке [х, х + ∆х] (см. рис. 6) и воспользуемся законом сохранения количества тепла:

Общее количество тепла на отрезке [х, х + ∆х] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.

Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U, вычисляется по формуле: ∆Q= CρS∆x∆U, где С — удельная теплоемкость материала ( = количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S — площадь поперечного сечения.

Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q1 = -kSUx(x, t)∆t, где k — коэффициент теплопроводности материала ( = количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х, а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть Ux CpS∆x∆U = kSUx(x + ∆х, t) ∆t — kSUx(x, t)∆t.

Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:

Отсюда уравнение теплопроводности имеет вид

Ut = a 2 Uxx,
где — коэффициент температуропроводности.

В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t), получится неоднородное уравнение теплопроводности

Начальные условия и граничные условия.

Для уравнения теплопроводности задается только одно начальное условие U|t=0 = φ(х) (или в другой записи U(x,0) = φ(х)) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х). Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных.

Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g1(t) ≡ Т1 и g2(t) ≡ Т2, где Т1 и Т2 — постоянные. Если концы поддерживаются все время при нулевой температуре, то Т1= Т2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g1(t) = g2(t) = 0, то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условия третьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:

Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен Здесь h1 > 0 — коэффициент теплообмена с окружающей средой, g1(t) — температура окружающей среды на левом конце. Знак минус поставлен в формуле по той же причине, что и при выводе уравнения теплопроводности. С другой стороны, в силу теплопроводности материала поток тепла через этот же конец равен Применив закон сохранения количества тепла, получим:

Аналогично получается условие (14) на правом конце стержня, только постоянная λ2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные.

Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h1, очень большой.

Перепишем условие (14) при х = 0 в виде и устремим . В результате будем иметь условие первого рода:

Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие означает, что температура на ее краях поддерживается нулевой. Точно так же, условия и внешне очень похожи, но в первом случае оно означает, что рассматривается плоская пластина и края ее теплоизолированы, а во втором случае оно означает, что рассматривается задача о распространении тепла в теле и поверхность его теплоизолирована.

Решение первой начально-краевой задачи для уравнения теплопроводности.

Рассмотрим однородную первую начально-краевую задачу для уравнения теплопроводности:

Найти решение уравнения

удолетворяющее граничным условиям

и начальному условию

Решим эту задачу методом Фурье.

Шаг 1. Будем искать решения уравнения (15) в виде U(x,t) = X(x)T(t).

Найдем частные производные:

Подставим эти производные в уравнение и разделим переменные:

По основной лемме получим

Теперь можно решить каждое из этих обыкновенных дифференциальных уравнений. Обратим внимание на то, что используя граничные условия (16), можно искать не общее решение уравнения б), а частные решения, удолетворяющие соответствующим граничным условиям:

Шаг 2. Решим задачу Штурма-Лиувилля

Эта задача совпадает с задачей Штурма-Лиувилля, рассмотренной в лекции 3. Напомним, что собственные значения и собственные функции этой задачи существуют только при λ>0.

Собственные значения равны

Собственные функции равны (См. решение задачи)

Шаг 3. Подставим собственные значения в уравнение а) и решим его:

Шаг 4. Выпишем частные решения уравнения (15):

В силу линейности и однородности уравнения (15) их линейная комбинация

Шаг 5. Определим коэффициенты An в (19), используя начальное условие (17):

Приходим к тому, что начальная функция φ(x) разлагается в ряд Фурье по собственным функциям задачи Штурма-Лиувилля. По теореме Стеклова такое разложение возможно для функций, удовлетворяющих граничным условиям и имеющих непрерывные производные второго порядка. Коэффициенты Фурье находятся по формулам

Вычислив эти коэффициенты для конкретной начальной функции φ(x) и подставив их значения в формулу (19), мы тем самым получим решение задачи (15), (16), (17).

Замечание. Используя формулу (19), можно также, как в лекции 3, получить решение первой начально-краевой задачи для уравнения Ut = a 2 Uxx. Оно будет иметь вид

где


источники:

http://pandia.ru/text/80/477/35705.php

http://vicaref.narod.ru/PDE/index4.htm