Уравнение теплового баланса 8 класс

Уравнение теплового баланса 8 класс

Ключевые слова конспекта: количество теплоты, уравнение теплового баланса, закон сохранения энергии в тепловых процессах.

Для механических явлений при определённых условиях выполняется закон сохранения механической энергии: полная механическая энергия системы тел сохраняется, если они взаимодействуют силами тяготения или упругости. Если действуют силы трения, то полная механическая энергия тел не сохраняется, часть её (или вся) превращается в их внутреннюю энергию.

При изменении состояния тела (системы) меняется его внутренняя энергия. Состояние тела и соответственно его внутреннюю энергию можно изменить двумя способами: в процессе теплопередачи или путём совершения внешними силами работы над телом (работа, например, силы трения). Мерой изменения внутренней энергии тела в процессе теплообмена выступает количество теплоты (Q).

Уравнение теплового баланса

В изолированной системе при смешивании горячей и холодной воды, количество теплоты Q1, отданное горячей водой, равно количеству теплоты Q2, полученному холодной водой, т.е.: |Q1|= |Q2| . Q1 (выделенное) 0.

Qотданное + Qполученное = 0

Записанное равенство называется уравнением теплового баланса (эта формула и уравнение, используемое в 8 классе!). Определение: суммарное количества теплоты, которое выделяется в теплоизолированной системе равно суммарному количеству теплоты, которое в этой системе поглощается.

Уравнение теплового баланса связывает количество теплоты, полученное одним телом, и количество теплоты, отданное другим телом при теплообмене. При этом в теплообмене могут участвовать не два тела, а три и более: Q1 + Q2 + Q3 + … = 0

Уравнение теплового баланса – это закон сохранения энергии для процессов теплообмена в термоизолированных системах. Оно даёт возможность определить те или иные величины. В частности, значения удельной теплоёмкости веществ определяют из уравнения теплового баланса.

◊◊◊ Обратите внимание! В более старших классах используется следующее определение «уравнения теплового баланса»: Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. При этом суммарная энергия системы не изменяется«. А также используется другая формула уравнения (с учетом интегральной формы Первого начала термодинамики):

Закон сохранения энергии в тепловых процессах

Закон сохранения энергии в тепловых процессах выполняется при нагревании тел за счёт энергии, выделяющейся при сгорании топлива. Топливо — это природный газ, дрова, уголь, нефть. При его сгорании происходит химическая реакция окисления — атомы углерода соединяются с атомами кислорода, содержащимися в воздухе, и образуется молекула оксида углерода (углекислого газа) С02. При этом выделяется энергия.

При сгорании различного топлива одинаковой массы выделяется разное количество теплоты. Например, хорошо известно, что природный газ является энергетически более выгодным топливом, чем дрова. Это значит, что для получения одного и того же количества теплоты, масса дров, которые нужно сжечь, должна быть существенно больше массы природного газа. Следовательно, различные виды топлива с энергетической точки зрения характеризуются величиной, называемой удельной теплотой сгорания топлива.

Конспект урока «Уравнение теплового баланса».

Уравнение теплового баланса — формула, суть и примеры решений

Общие сведения

Баланс в переводе на русский язык означает равновесие. Когда теплоизолированная система приходит в состояние теплового равновесия, то температура всех тел, образующих эту совокупность, становится одинаковой. Такую ситуацию называют законом теплового равновесия или нулевым уравнением термодинамики.

Впервые с уравнением теплового баланса знакомят в средней школе на уроке физики. Ученикам в седьмом классе предлагается решить несколько простых заданий, используя равенство. Формула и определение даётся без доказательства, так как для понимания процесса нужно знать понятия, которые разбираются в выпускных классах школы. Например, то, что теплоёмкость не является характеристикой вещества, при этом она может быть разной в зависимости от проходящих процессов.

Закон теплового баланса позволяет утверждать, что когда в изолированной системе физических тел происходит только теплообмен, то часть тепла, переданного телами, внутреннее состояние энергии которых уменьшается, численно равняется теплу, полученному объектами с возрастающей внутренней энергии. Математически уравнение записывается в виде следующей формулы: Q 1 + Q 2 + Q 3 + …+ Qn = 0, где:

  • n — число тел, находящихся в теплоизолированной системе;
  • Q — полученное количество теплоты.

Если предположить, что имеется совокупность, состоящая из двух тел, из которых одно отдаёт тепло, а другое принимает его, то справедливо будет записать: Q1 = Q2. Таким образом, теплоотдача всегда равняется теплоприёму. Поэтому этот закон и называют правилом сохранения энергии в тепловых процессах.

Когда тела два, то понять, какое из них отдаёт тепло, а какое получает, несложно. То, что имеет большее нагревание, — будет отдавать. Если же объектов три и более, и некоторые из них имеют промежуточную температуру, определить, какие из них принимают тепло, довольно сложно. Вот тут на помощь и приходит уравнение термодинамики.

Изменение внутренней энергии объясняется теплопередачей, то есть случаем, когда работа не совершается. Поэтому в физике уравнение теплового баланса используется при анализе процессов теплопередачи, нахождении КПД. Это равенство можно применять как при рассмотрении твёрдых тел, так и жидкости.

Суть уравнения

Следует рассмотреть процесс установления теплового равновесия в теплоизолированной системе. Это такая совокупность, в которой объекты взаимодействуют только друг с другом. Простейшая система будет состоять из двух тел. Например, в термос налит сок и в него вброшен лёд. В этом случае термос является изолятором от внешнего воздействия. Пусть первое тело имеет температуру t1, а второе t2. Допустим, что t1 больше t2. Это допущение не является принципиальным, поэтому его можно использовать.

В начальный момент времени тела находятся далеко друг от друга и теплообмен между ними не происходит. Как только, они соприкоснутся — начнётся взаимодействие. Так как температура первого тела больше, то оно начнёт остывать, а второе нагреваться. Происходит теплопередача. В какой-то момент времени она прекратится и наступит тепловое равновесие. То есть температура двух тел станет одинаковой: t1 = t2.

Получившаяся температура называется равновесной. Обозначается она греческой буквой тета — θ. Так как раньше первое тело имело большую температуру, то получается, что в процессе взаимодействия оно отдало тепло. Записать это можно как Q1 — — количество теплоты, отданное первым телом. Второй же объект в процессе подогрелся — увеличил температуру. Обозначить это можно как +Q2 — количество теплоты, полученное вторым телом.

Получить тепло второй объект мог только от первого тела, так как рассматриваемая система изолированная. Соответственно, и отдать определённое количество теплоты первое тело могло только второму. Отсюда можно сделать вывод, что если система теплоизолированная, то эти два количества теплоты одинаковы: Q1 — = +Q2. Фактически это есть уравнение баланса.

Такая запись даётся в школьных учебниках. Но профессиональные физики записывают его в другой форме. Для термодинамики неважно, какой объект отдаёт, а какой получает тепло. Наука изучает только количество теплоты, полученное в процессе. Взяв простую аналогию с весом, когда о похудевшем человеке на два килограмма можно сказать, что он поправился на минус два кило, будет верным записать: Q1 — = -Q1 или -Q1 = Q2.

Если собрать два слагаемых таким образом, чтобы они находились с одной стороны знака равенства, то можно записать: Q1 + Q2 = 0.

Суммарное количество теплоты, образуемое при теплообмене тел в теплоизолированной системе, равно нулю. При этом это правило будет справедливо и для энного количества объектов.

Доказательство закона

Пусть имеется теплоизолированная система, состоящая из нескольких помещённых в неё объектов. Сами тела могут обмениваться теплом только друг с другом. Первый закон термодинамики для системы в целом можно записать как Q = А’ + Δ‎ U. То есть количество теплоты, полученное всей системой, равняется суммарной работе, совершённой всеми телами в совокупности над внешним миром, складывающейся с изменением энергии всех тел внутри системы.

По условию задачи внутренняя энергия меняется не за счёт совершения работы. Поэтому А’ = 0. С другой же стороны, теплоизоляция обозначает, что Q = 0. Иными словами, количество энергии, поступающее из окружения Земли, равняется нулю. Следовательно, изменение внутренней энергии всех тел в системе будет нулевым: Δ‎ U = 0.

Энергия системы состоит из внутренних энергий каждого из входящих в неё тел: U = U1 + U2 +…+ Un. Изменение же её Δ‎ U = Δ‎ U 1 + Δ‎ U 2 + … + Δ‎ Un. Отсюда следует, что если внутренняя энергия остаётся неизменной, то сумма Δ‎ U будет нулевой: Δ‎ U 1 + Δ‎ U 2 + … + Δ‎ Un = 0.

Первый закон термодинамики персонально для каждого из тел входящих в систему можно записать как следующую систему:

Все уравнения, входящие в неё, можно сложить почленно. При этом распределив слагаемые для удобства дальнейшего анализирования: Q1 + Q2 +…+ Q n = (А n1′ + А n2′ + … + А n’) + (Δ‎ U1 + Δ‎ U2 + … + Δ‎ Un). Из полученного выражения можно сделать вывод, что сумма дельт второго члена в правой части равняется нулю. В первом же члене с правой стороны каждое слагаемое также равняется нулю. Поэтому можно записать: Q1 + Q2 +…+ Q n = 0. Что и следовало доказать.

Для решения задач полезно вспомнить, на что может идти полученное тепло. К таким частным случаям относят:

  1. Процессы, при которых нет фазовых переходов. В таком случае полученное количество идёт на увеличение теплоты потенциальной и кинетической энергии: Q = c * m * Δ‎T (изохорная теплоёмкость).
  2. Плавление. Например, есть тающий лёд, к которому подводят тепло, при этом кинетическая энергия остаётся постоянной. Значит, изменяется только потенциальная мощность. В этом случае происходит превращение льда в воду. Это действие называют плавлением — переход кристаллического вещества из твёрдого состояния в жидкое: Q = λ * m.
  3. Парообразование. Выделение из жидкости пара: Q = L * m.

Типовое задание

Явление теплового баланса используется как в изучении процессов при переходе из одного агрегатного состояния в другое, так и для твёрдых или жидких тел, не изменяющих решётку. Существуют типовые задания, входящие в школьную программу. Ученик, решая их, научится находить удельные параметры и сможет понять всю важность выражения теплового баланса.

В латунный котёл массой 128 граммов, содержащий 240 граммов воды, при 8,4 градусах опущено металлическое тело массой 192 грамма, нагретое до 120 градусов Цельсия. Окончательная установившаяся температура составила 21,5 градус. Определить удельную теплоёмкость рассматриваемого тела. Для решения задачи необходимо из справочника взять значение энергетической теплоёмкости латуни. Она составляет 400 Дж/ кг *С 0 . При этом нужно учитывать, что котёл теплоизолирован.

Температуру, которая установилась через время, обозначают буквой θ. Решение подобных задач начинают с установления количества тел, участвующих в теплообмене. В этом примере их три: вода, котёл, испытываемое тело. Количество тепла, полученное всеми тремя объектами, согласно закону, будет равняться нулю: Qв + Qк +Qт = 0. Теперь следует каждое слагаемое расписать отдельно:

  1. Qв = mв * cв * Св (θ — Tв).
  2. Qк = mк * cл * (θ — Tв).
  3. Qт = mт * cт * (θ — Tк).

Полученные формулы нужно подставить в исходное уравнение. При этом следует обратить внимание, что при подстановке образуется общий множитель (θ — T в), который можно вынести за скобки: (m в * c в + m к * c л) * (θ — T в) + m т * c т * (θ — T к) = 0.

Из условия задачи известно, что у тела температура 100 градусов, а равновесная температура меньше. Поэтому последняя скобка будет отрицательной. Значит, есть смысл перенести это слагаемое вправо, поменяв местами вычитаемое и уменьшаемое: (m в * c в + m к * c л) * (θ — T в) = m т * c т * (T к — θ). Отсюда можно выразить удельную теплоёмкость массы тела. Она будет равняться: C т = (m в * c в + m к * c л) * (θ — T в) / m т * (T к — θ) .

Все данные, используемые в формуле, известны. Остаётся только провести расчёты, подставив значения: Cт = (0,24 кг * 4,2 кДж/кг*С + 0,128 кг * 0,4 кДж/кг*С *(21,5 — 8,4) С) / 0,192 кг * (100 — 21,5)С = 0,921 кДж/ кг *С 0 . Полученное вещество является алюминием.

Примеры высокого уровня

Эти задачи рассчитаны на подготовленных учащихся, понимающих суть процессов и знающих уравнение баланса. Например, электрическая установка с мощностью P = 350 Вт не может нагреть воду массой 0,6 кг до кипения. Убедившись в этом, её выключают. Нужно определить, каким останется конечный нагрев воды через 15 секунд.

Из условия можно утверждать, что мощность теплопотерь равняется мощности нагревателя: Pпот = P. По сути, мощность теплопотерь это количество тепла, отдаваемое телом в единицу времени. То есть: P пот = Q — / Δ‎T. С другой стороны, отданное тепло находится из формулы: Q — = c * m * (-Δ‎T). Отсюда можно записать: P = — c * m * Δ‎T / Δ‎t. Из последнего выражения легко выразить искомый параметр: Δ‎T = -(P * Δ‎t) / (c * m). Все необходимые данные есть в условии и их необходимо просто подставить: Δ‎T = — 350 Вт * 15 с / 4200 Дж * 0,6 кг = — 2,1 С 0 . Минус в ответе показывает, что температура понижается. Задача решена.

Вот ещё одна задача, для решения которой необходимо вначале исследовать ситуацию. В ёмкость поместили смесь, состоящую из пяти килограммов воды и трёх килограммов льда. Затем туда пустили 0,2 кг водяного пара при температуре 100 0 С. Нужно определить, что произойдёт.

По условию задачи даны три массы mв, mл, mп. Можно предположить, что при смешении в момент запуска пара температура в системе была нулевой. Это исходит из того, что в ёмкости одновременно находится лёд и вода. Поступающий пар конденсирует, и из него образуется вода. Через время она остывает до нуля. Поэтому в начальный момент выделившаяся энергия идёт только на таяние льда. Cуществует три варианта развития события:

  1. Лёд не растает ( θ =0 0 С).
  2. Лёд полностью растает (0 0 С).
  3. Вода начнёт кипеть ( θ = 100 0 С) .

Для того чтобы выяснить, какой вариант верный, нужно найти выделившуюся энергию: Qпл = λ * m = 330 * 3 = 990 кДж. Получается, чтобы растопить лёд, нужно 990 кДж теплоты. Пар, вступая в реакцию, отдаёт: Q- = L* m + cв * mв (Tпар – Tпл) = 2300 + 0,2 + 4,2 * 0,2 * 100 = 544 кДж. Учитывая два полученных результата, можно утверждать, что при конденсации основного пара выделившейся теплоты будет недостаточно для расплавления льда. Следовательно θ = 0 0 С.

План-конспект урока по физике в 8-м классе с применением ИКТ на тему: «Уравнение теплового баланса»

Разделы: Физика

Тип урока: объяснение нового материала.

Форма проведения урока: лекция.

Цели урока: выяснить физическое содержание закона сохранения энергии для тепловых процессов; вывести уравнение теплового баланса.

Задачи:

  • способствовать развитию интереса к физике, логического мышления, внимания, памяти, самостоятельности при поиске решения;
  • формировать научное мировоззрение;
  • формировать умение работать в малых группах.

Средства обучения:

  • УМК — Программа МО РФ ОСНОВНОЙ ШКОЛЫ. Физика. 7-9 классы. Авторы:Е.М.Гутник, А.В.Перышкин. Москва, «Дрофа», 2005.
  • Учебник «Физика. 8 класс» А.В.Перышкин, «Дрофа», 2006 г.

Оборудование урока:

  • Раздаточный материал (задачи).
  • Проектор, компьютер, видеоматериалы.
  • Электронные уроки и тесты «Физика в школе» раздел «Внутренняя энергия», м/м презентация учителя.
  • Microsoft Office Word – XP 2007.
  • Microsoft Office Power Point -2007.

Ход урока

Ι. Вводное слово учителя.

1.Тема урока вводится через интригующую загадку Шерлока Холмса. [1]

(Приложение 1. Слайд с Шерлоком Холмсом и его загадкой.)

Выслушав ответы детей, педагог обещает, что в конце урока, они сами решат: правы ли они в своих предположениях.

ΙΙ. Объяснение нового материала.

Рассказ учителя сопровождается показом м/м материалов урока: «Внутренняя энергия» урок 6 («Новый Диск»).

Лекция учителя

М/м показ

1. В начале, необходимо отметить, что среди законов физики, есть такие, которые очень широко применяются в описании поведения тех или иных систем. Одним из таких законов и является закон сохранения энергии в тепловых процессах: то есть энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно. Она только переходит из одной формы в другую и если теплообмен и совершаемая работа происходит только между телами данной системы, то эта система называется изолированной. Для такой системы изменение внутренней энергии равно нулю и суммарная работа в системе тоже равна нулю, соответственно равно нулю и суммарное количество отданного и полученного телами тепла. Для любой изолированной системы при любых изменениях внутри нее внутренняя энергия остается неизменной.

Это и есть закон сохранения энергии в тепловых процессах. Он косвенно подтверждает невозможность остановки теплового движения.

«Внутренняя энергия» урок 6.

2. На последнем уроке мы с вами выполняли лабораторную работу, где высчитывали количество теплоты, отданное горячей водой и полученное холодной. Вначале мы рассчитали отдельно количество теплоты в первом случае, потом — во втором, и затем сравнили результаты. Сегодня мы с вами научимся выполнять все эти операции при помощи красивейшего математического уравнения – уравнения теплового баланса.

3. Вызываются помощники из класса для проведения эксперимента.

4. Демонстрационный эксперимент.

Проводится на демонстрационном столе.

Мы знаем, что если привести в соприкосновение два тела разной температуры, то 1-е: теплообмен будет протекать до тех пор, пока температуры обоих тел не сравняются, и 2-е: первое тело будет передавать столько тепла, сколько получит второе тело.

Таким образом, из закона сохранения тепловой энергии получим:

Это соотношение называют уравнением теплового баланса.

Критерием истинности является практика. Поэтому, используя калориметр, смешаем фиксированные массы горячей и холодной воды с заданными температурами, и, затем, минуты через две, измерим температуру смеси t.

Один учащийся выполняет эксперимент, другой записывает «Дано» на доске:

Пусть m1— масса горячей воды, m2 масса холодной воды, тогда:

Что мы должны получить в результате эксперимента? В чем убедиться?

Расчетная конечная температура смеси и экспериментальная конечная температура должны совпасть.

После этого используя уравнение теплового баланса, рассчитаем температуру смеси.

0,2*70 — 0,2 t = 0,1 t-0,1*10

Откуда t = 50 o C

Затем, сравнивая измеренное значение с рассчитанным, мы убеждаемся, что

5. Решим задачу (практическая часть объяснения).

Учащиеся решают задачу совместно с учителем.

На экране м/м презентация «Задача».

В ведро налита вода массой 5 кг, температура которой 9 o С. Сколько кипятка надо долить в ведро, чтобы температура воды стала равной 30 o С?

ΙΙΙ. Закрепление изученного.

Открытие тайны Холмса.

Учитель еще раз выслушивает догадки, рассуждения детей и подводит итог.

На экране – разгадка – последний слайд Презентации «Шерлок Холмс».

Домашнее задание.

В воду массой 1,5 кг положили лед, начальная температура которого 0 o C. Начальная температура воды 30 o C Сколько нужно взять льда, чтобы он весь растаял?

Литература

В.И.Елькин «Необычные учебные материалы по физике». Книга 1. Москва, Школа-Пресс, 2001.


источники:

http://nauka.club/fizika/uravneni%D0%B5-teplovogo-balansa.html

http://urok.1sept.ru/articles/518151