Уравнение теплового баланса адиабатического реактора

Адиабатические реакторы

Адиабатический реактор периодического действия. Адиабатический реактор периодического действия, например реактор идеального смешения (А-РИС-П), представляет собой аппарат с мешалкой, стенки которого имеют тепловую изоляцию для поддержания адиабатического режима. В адиабатических реакторах нет теплообмена, т. е. Qт = 0. В периодическом реакторе отсутствует также и конвективный поток, поэтому Qконв = 0. Для этого реактора уравнения теплового баланса (72) и (74) примут, соответственно, следующий вид:

(141)

(142)

где Ср – удельная теплоемкость реакционной смеси.

При проведении экзотермической реакции температура реакционной среды увеличивается с уменьшением концентрации реагента А, в связи с чем знаки тепловых потоков в уравнении (142) разные.

С учетом зависимости уравнение (142) принимает вид

(143)

(144)

Подставив в уравнение (144) значение текущей концентрации (81), получаем

(145)

Разделив обе части уравнения (145) на начальную концентрацию компонента А СА0, получим выражение теплового баланса, составленное на 1 моль исходного реагента:

(146)

Группа членов представляет собой молярную теплоемкость Ср(м), т. е.

= Ср(м), (147)

после подстановки полученного значения (147) в уравнение (146), получаем

(148)

Уравнение (148) является дифференциальной формой уравнения теплового баланса для идеального реактора периодического действия, работающего в адиабатических условиях. Из него следует, что в адиабатическом реакторе периодического действия все тепло химической реакции расходуется на изменение температуры реакционной среды и накапливается в реакторе.

Адиабатические реакторы непрерывного действия.В адиабатических проточных реакторах отсутствует теплообмен с окружающей средой (Qт = 0), для стационарных условий не происходит также накопление тепла (Qнак = 0), поэтому уравнение (70) принимает вид

(149)

Адиабатический реактор идеального вытеснения (А-РИВ) представляет собой трубчатый реактор, снабженный тепловой изоляцией. Значения тепловых потоков, входящих в уравнение (149), для элементарного объема реактора dVр можно определить из общего дифференциального уравнения (71) с учетом ряда упрощений, соответствующих гидродинамической обстановке и тепловому режиму в данном реакторе.

В реакторе идеального вытеснения конвективный перенос тепла (так же, как и вещества) происходит только в направлении основного перемещения потока реагентов, т. е. по длине реактора l (или по оси Х), а по осям Y и Z градиенты параметров равны нулю, поэтому можно записать

Изменением температуры в реакторе за счет теплопроводности обычно пренебрегают, тогда

С учетом вышесказанного уравнение теплового баланса (72) можно записать в виде простого дифференциального уравнения

(150)

Подставив в уравнение (150) значение −vA из уравнения (79), получим

(151)

Для реактора вытеснения зависимость между dl и dτ можно выразить соотношением

Подставив это значение в уравнение (151), получим выражение

(152)

Если обе части уравнения (152) разделить на величину СА0, получим уравнение теплового баланса, составленное на 1 моль исходного реагента А:

(153)

(154)

Сравнение уравнения тепловых балансов для РИС-П (148) и РИВ (154) показывает, что по форме они одинаковы, однако в случае реактора идеального вытеснения группа членов ( ) характеризует не накопление тепла в элементарном объеме, как это имело место в РИС-П, а тепло, уносимое из элементарного объема конвективным потоком реагентов. При стационарном режиме скорость тепловыделения в результате химического превращения ( ) и скорость уноса тепла с конвективным потоком равны между собой, что обеспечивает неизменность температуры во времени для любой точки реактора. Изменение температуры имеет место только по длине реактора l.

Для получения полных тепловых потоков дифференциальные уравнения интегрируют либо по времени (для РИС-П), либо по объему или длине (для РИВ).

Расчеты по таким уравнениям представляют значительную сложность и осуществляются преимущественно с помощью ЭВМ.

Реакторы идеального смешения непрерывного действия (РИС-Н) в стационарном режиме характеризуются отсутствием градиента параметров как во времени, так и по объему, в связи с чем уравнение теплового баланса (так же, как и материального) составляют сразу для всего реактора в целом, пользуясь конечными значениями параметров на входе в реактор и на выходе из него.

Адиабатический реактор идеального смешения непрерывный (А-РИС-Н) снабжен мешалкой и тепловой изоляцией для поддержания в нем адиабатического режима. Следует помнить, что в РИС-Н благодаря интенсивному перемешиванию все параметры процесса, имеющие на входе в реактор значения CА0, хА0, Т0, мгновенно изменяются до CА, хА, Т, имеющих одинаковые значения по всему объему реактора и отличающихся от выходных параметров.

Рассмотрим вывод уравнения теплового баланса для А-РИС-Н, работающего в стационарном режиме, для которого Qнак = 0 и Qт = 0, и уравнение (70) принимает вид

(155)

При этом где – молярные теплоемкости потока реагентов на входе в реактор и выходящего потока, отнесенные к 1 молю вещества А; Т0, Т – температура реагентов на входе в реактор и выходящего потока.

С учетом этих значений уравнение (155) можно записать в виде

Обычно теплоемкость среды меняется незначительно, т. е. что позволяет записать

(156)

Тепло химической реакции будет определяться уравнением

(157)

При условии, что на входе в реактор хА = 0, уравнение (157) запишется в виде

(158)

Подставляя полученные значения (156) и (158) в уравнение (149), имеем

(159)

Уравнение теплового баланса (159) показывает, что в адиабатическом реакторе идеального смешения непрерывном все тепло химической реакции расходуется на нагревание реагентов от температуры Т0 до Т и уносится из реактора конвективным потоком. Уравнение составлено для всего реактора в целом на 1 кмоль исходного реагента А. Из него следует, что между степенью превращения и изменением температуры реакционной среды существует линейная зависимость. При полном превращении исходного компонента А, когда хА = 1, разность температур (ТТ0) достигает максимального значения и носит название адиабатической разности температур (∆Тад). При хА = 1 уравнение (159) примет вид

(160)

(161)

Согласно [6], для любой степени превращения хА вещества А температура в реакторе может быть рассчитана по формуле

(162)

где знак «+» соответствует экзотермической, а «–» – эндотермической реакциям.

Это соотношение между температурой и степенью превращения при проведении процесса в адиабатическом режиме справедливо для РИС-П и РИВ при условии незначительного изменения величины ΔН / Ср(м) в процессе превращения реагента А и может быть использовано для практических расчетов.

Дата добавления: 2015-01-01 ; просмотров: 126 ; Нарушение авторских прав

Совместное решение материального и теплового

балансов для стационарного адиабатического реактора РИС–Н

Математическая модель адиабатического реактора РИС-Н

. (13.17)

Система уравнений материального и теплового балансов представляет собой математическую модель реактора.

Определим значения степени превращения XА и температуры Т, достигаемые в реакторе. Естественно, что частные значения будут зависеть от конкретного вида кинетического уравнения. Скорость химической реакции зависит от концентрации CA и температуры T.

Рассмотрим самые простые варианты:

– необратимую реакцию первого порядка А R;

– обратимую реакцию первого порядка А R.

Предварительно преобразуем математическую модель реактора.

Ранее (см. раздел 2) получено:

. (13.18)

Уберем скорость химической реакции из уравнения теплового баланса (13.17). Представим произведение скорости химической реакции на объем, как

. (13.19)

Тогда уравнение теплового баланса будет:

. (13.20)

Математическую модель реактора можно представить следующим образом:

; (13.21)

.

Для необратимой реакции первого порядка скорость химической реакции

.(13.22)

Подставив значение скорости химической реакции в математическую модель реактора (13.21), получим систему уравнений:

. (13.23)

Аналитическое решение системы уравнений (13.23) затруднено, т.к. температура Т входит в уравнения в виде линейного члена и в составе комплекса. Для решения используем численные методы, т.к. уравнения являются трансцендентными.

Решим систему графическим методом.

Уравнение теплового баланса (13.23) преобразуем и получим:

. (13.24)

В координатах XA-Т это уравнение прямой линии, где отрезок, отсекаемый на оси абсцисс – начальная температура Т0. Наклон линии будет определять значение изменения энтальпии . Крутизну угла наклона можно изменить, меняя начальную концентрацию (рисунок 13.1).

Рисунок 13.1 – Уравнение теплового баланса

реактора идеального смешения для эндотермических (а)

и экзотермических реакций (б)

. (13.25)

Принимаем, что степень превращения XA = 1, следовательно,

. (13.26)

Величина ΔТадиаб. показывает максимальное изменение температуры реакционной смеси, возможное в адиабатических условиях

. (13.27)

Для необратимой простой реакции

. (13.28)

Решение системы уравнений материального и теплового балансов имеет различный вид для экзо- и эндотермических реакций (рисунки 13.2, 13.3).

Для эндотермической реакции возможно только одно решение, в то время как для экзотермической реакции, в зависимости от начальных температур Т010203, возможно от одного до трех решений.

Если обратимая простая реакция, то

. (13.29)

Для обратимой реакции степень превращения ХА фактически будет находиться ниже равновесной кривой, следовательно, для эндотермической реакции одно решение, а для экзотермической в зависимости от начальной температуры Т0, будет от одного до трех решений (рисунки 13.4, 13.5).

Химические процессы и реакторы (стр. 10 )

Читайте также:
  1. Адиабатические изменения состояния в атмосфере
  2. Биологическая очистка сточных вод. Характеристика метода. Биореакторы. Область применения.
  3. Изотермические реакторы
  4. Одинарные реакторы
  5. Политропические реакторы
  6. Реакторы с различным тепловым режимом
  7. Реакторы химического производства
  8. Сдвоенные реакторы
  9. Токоограничивающие реакторы с нелинейной характеристикой
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Все тепловые явления учитываются при составлении теплового баланса химического реактора.

§ 6.1. Уравнение теплового баланса.
Тепловые режимы химических реакторов

В уравнении теплового баланса учитываются все тепловые потоки, входящие в реактор и выходящие из него. Такими потоками являются: Q вых – физическая теплота реакционной смеси, входящей в элементарный объем, для которого составляется баланс (входной поток); Q вых – физическая теплота реакционной смеси, покидающей элементарный объем (выходной поток); Q xp – теплота химической реакции (знак теплового эффекта зависит от того, происходит ли выделение или поглощение теплоты в результате химической реакции); Q то – теплота, расходуемая на теплообмен с окружающей средой (в зависимости от соотношения температур в реакторе и окружающей среде или в теплообменном устройстве этот поток может быть также направлен и в объем и из него); Q фп – теплота фазовых превращений.

Для стационарного режима работы реактора алгебраическая сумма всех тепловых потоков равна нулю:

В нестационарном режиме происходит положительное или отрицательное накопление теплоты в элементарном объеме:

Q вх – Q вых ± Q хр ± Q то ± Q aп = Q нак . (6.2)

Уравнения (6.1) и (6.2) являются общими уравнениями теплового баланса химического реактора. Конкретный вид уравнения теплового баланса зависит от вида теплового режима и гидродинамической обстановки в реакторе. Различают несколько видов тепловых режимов химических реакторов. Рассмотрим различные тепловые режимы реакторов, в которых не происходит фазовых превращений.

В изотермическом режиме температура реакционной смеси, входящей в реактор, равна температуре в реакторе и температуре смеси, покидающей реактор. Это возможно, если выделение или поглощение теплоты в результате химической реакции полностью компенсируется теплообменом с окружающей средой. Для стационарного изотермического режима при постоянстве физических свойств системы можно записать:

Адиабатический режим характеризуется полным отсутствием теплообмена с окружающей средой. В этом случае вся теплота химической реакции полностью расходуется на нагрев или охлаждение реакционной смеси. Для стационарного адиабатического режима

Промежуточный режим характеризуется тем, что частично теплота химической реакции расходуется на изменение теплосодержания (нагрев или охлаждение) реакционной смеси, частично – на теплообмен с окружающей средой. Этот режим наиболее часто встречается в реальных химических реакторах. Промежуточный тепловой режим описывается полным уравнением теплового баланса (6.1).

В главе 5 были рассмотрены математические модели изотермических реакторов. Для расчетов на основе этих моделей, как правило, достаточно лишь уравнения материального баланса. При расчете неизотермического реактора необходимо совместно решить систему уравнений материального и теплового балансов, из которых первое учитывает изменение количества вещества, а второе – изменение количества теплоты при протекании химического процесса.

Ниже рассматриваются особенности составления математических моделей и расчетов на их основе для неизотермических реакторов с различной гидродинамической обстановкой.

§ 6.2. Проточный реактор идеального смешения
в неизотермическом режиме

При составлении балансовых уравнений в качестве элементарного объема для реактора идеального смешения принимают полный реакционный объем V. Тепловые потоки за элементарный промежуток времени dτ для объема V:

; (6.3)

; (6.4)

; (6.5)

, (6.6)

где c p – средняя теплоемкость реакционной смеси; ρ – средняя плотность реакционной смеси; ∆H – тепловой эффект реакции, отнесенный к 1 моль реагента; К т коэффициент теплопередачи; F то – поверхность теплообмена с окружающей средой; ∆Т то движущая сила теплообмена (средняя разность температур в реакторе и внешней среде, с которой происходит теплообмен); величины, относящиеся к входному потоку, отмечены индексом «0», величины без индекса относятся к реакционной смеси, находящейся в реакторе в данный момент или выходящей из него.

Накопление теплоты в реакторе за время dτ равно изменению теплосодержания реакционной смеси:

(6.7)

С учетом уравнений (6.2)–(6.7) уравнение теплового баланса для нестационарного режима будет иметь вид

(6.8)

В стационарном режиме правая часть уравнения (6.8) равна нулю. Если также принять, что v 0 = v и пренебречь изменением средней теплоемкости и плотности реакционной смеси при изменении состава и температуры, для стационарного режима

(6.9)

Математическая модель неизотермического реактора идеального смешения кроме уравнения теплового баланса (6.9) включает в себя уравнение материального баланса

. (6.10)

Уравнения (6.9) и (6.10) взаимосвязаны: в оба входит в качестве составной части функция w rA (c A , T). Скорость химической реакции w rA зависит и от концентрации реагентов (степени превращения), и от температуры. Чем выше температура, тем выше скорость реакции и, следовательно, тем большая степень превращения должна достигаться при том же среднем времени пребывания . Но рост степени превращения автоматически должен приводить к понижению скорости реакции. В проточном реакторе заданного объема устанавливаются степень превращения и температура, которые одновременно должны удовлетворять и уравнению (6.9), и уравнению (6.10).

При совместном решении уравнений (6.9) и (6.10) при заданных
= V/v и начальной температуре Т 0 можно определить значения х А и Т, удовлетворяющие этим уравнениям. Ниже рассмотрен анализ возможных решений уравнений материального и теплового балансов сначала для адиабатического реактора идеального смешения, затем для реактора идеального смешения с внешним теплообменом. На основании этого анализа можно сделать вывод о том, какие условия проведения процесса нужно выбрать для достижения высокой степени превращения реагентов.

Совместное решение уравнений материального и теплового балансов для стационарного адиабатического реактора идеального смешения. Математическая модель проточного адиабатического реактора идеального смешения представляет собой систему уравнений материального и теплового балансов:

(6.11)

Определим, используя эту систему уравнений, степень превращения х А и температуру Т, достигаемые в реакторе. Различные частные решения зависят от конкретного вида кинетического уравнения w rA = w rA (c A , T) реакции, протекающей в аппарате. Рассмотрим решения для реакций с наиболее простой кинетикой: необратимой реакции первого порядка АR и обратимой реакции первого порядка А R, так как в этих случаях все математические выкладки проще.

Предварительно преобразуем систему уравнений (6.11). В уравнении материального баланса заменим изменение концентраций (с А , 0 – c А ) равным ему соотношением с А , 0 х А . Упростим уравнение теплового баланса, исключив из него скорость реакции w rA .

Для этого воспользуемся уравнением материального баланса, в соответствии с которым w rA V = v(c A , 0 – с А ) = vc А ,0 x A . Тогда уравнение теплового баланса примет вид vc p ρ(Т 0 – Т) ∆Hvс А , 0 х А = 0. После сделанных преобразований систему уравнений (6.11) запишем так:

(6.12)

(6.13)

Необратимая реакция первого порядка. Кинетическое уравнение необратимой реакции первого порядка имеет вид

.

Подставим его в уравнение (6.12)

. (6.14)

Для определения степени превращения х А и температуры Т в реакторе уравнение материального баланса (6.14) нужно решить совместно с уравнением теплового баланса (6.13). Аналитическое решение этой системы уравнений затруднено из-за того, что температура T входит в уравнения и в виде линейного члена, и в составе комплекса, являющегося показателем экспоненциальной функции. Такие уравнения являются трансцендентными, и для их решения применяют численные методы.

Решим систему уравнений (6.13) и (6.14) графическим методом. Для этого запишем оба уравнения в виде зависимостей х А Т, построим графики этих зависимостей и найдем точки их пересечения, удовлетворяющие одновременно обоим уравнениям, т. е. являющиеся решениями системы.

В уравнении теплового баланса (8.14) зависимость между х А и T является линейной.

Эта прямая линия пересекает ось температур в точке Т = Т 0 и имеет угловой коэффициент

(6.15)

Знак углового коэффициента зависит от знака теплового эффекта, он отрицателен для эндотермических реакций, у которых ∆Н > 0 (рис. 6.1, а), и положителен для экзотермических реакций (рис. 6.1, б). Крутизну угла наклона можно изменить, меняя начальную концентрацию с A , 0 .

Рис. 6.1. Уравнение теплового баланса реактора идеального смешения
в координатах хА – Т для эндотермической (а) и экзотермической (б) реакций

Если принять х А = 1 (т. е. реакция прошла до конца), из уравнения (6.15) получим

Величина ∆TАД – максимальное изменение температуры реакционной смеси, возможное в адиабатических условиях, или адиабатическое изменение температуры (для экзотермических реакций, например, адиабатический разогрев). Уравнение (6.15) с учетом ∆T ад можно записать так:

(6.16)

Вид зависимости х А (T), соответствующей уравнению материального баланса (6.12), зависит от типа кинетического уравнения реакции. Для необратимой реакции первого порядка (эндотермической, и экзотермической) уравнение материального баланса (6.12) можно представить в следующем виде (с учетом того, что V/v = ):

(6.17)

Уравнение (6.17) описывает монотонно возрастающую функцию х a ( T ). При низких температурах, когда кинетическая энергия молекул существенно ниже энергии активации (об этом можно судить, сравнивая энергии Е и RT), х А 0. При высоких температурах, когда величины Е и RT имеют одинаковый порядок, числовое значение exp[E/(RT)] невелико. Так как предэкспоненциальный множитель k 0 = 10 8 + 10 13 , то в этом случае х А 1.

Таким образом, график функции (6.17) – кривая без экстремумов (рис. 6.2, кривая 1), при низких температурах асимптотически приближающаяся к нулю, при высоких – к единице, а при «средних» температурах имеющая одну точку перегиба (ее координаты можно получить, приравняв нулю производную d 2 x A /dT 2 ).

Положение среднего участка кривой относительно оси температур можно изменить, увеличив или уменьшив среднее время пребывания в реакторе ( = V/v). Из уравнения (6.17) следует, что увеличение при тех же температурах приведет к росту х А (рис. 6.2, кривая 2).

Рис. 6.2. Уравнение материального баланса реактора идеального смешения в координатах хA – Т для необратимой реакции первого порядка
при среднем времени пребывания 1 (1) и 2 (2)

Решение системы уравнений материального и теплового балансов имеет несколько различающийся вид для эндо — и экзотермических необратимых реакций. В случае проведения в адиабатическом реакторе идеального смешения необратимой эндотермической реакции графики функций (6.16) и (6.17) имеют лишь одну точку пересечения (см. рис. 6.3).

Координаты этой точки (х А / , T/) и являются решением системы уравнений: если в адиабатический реактор идеального смешения заданного объема V подает исходный реагент А, имеющий концентрацию с А , 0 с объемным расходом v и при начальной температуре Т 0 , необратимая эндотермическая реакция будет протекать в аппарате при температуре Т и при этом будет достигаться степень превращения х А / .

Рис. 6.3. Уравнения теплового (1) и материального (2) балансов
для адиабатического реактора идеального смешения при проведении
в нем необратимой эндотермической реакции (совместное решение)

Если в адиабатическом реакторе проводят необратимую экзотермическую реакцию, система уравнений материального и теплового балансов может иметь как одно, так и несколько решений, отвечающих стационарному режиму.

Из рис. 6.4 видно, что графики функций (6.16) и (6.17) имеют только одну точку пересечения, если начальная температура Т 0 реакционного потока будет сравнительно низкой (например, Т 10 ) или сравнительно высокой (например, T 20 ). При этом оказывается, что при подаче реагентов в реактор с низкой начальной температурой Т 10 процесс будет протекать при температуре, мало отличающейся от T 10 , а достигаемая степень превращения (ордината точки А на рис. 6.4) также будет очень низка. Более выгодным является режим работы реактора, соответствующий начальной температуре Т 30 . В этом случае также имеется лишь одна точка пересечения графиков (точка Е), т. е. одно решение системы уравнений, но оно соответствует высокой степени превращения, почти равной единице.

Если же реагенты подавать в реактор с начальной температурой Т 20 , то линии, соответствующие уравнениям материального и теплового балансов, пересекаются трижды, т. е. координаты точек В, С, D являются возможными решениями системы уравнений, составляющей математическую модель адиабатического реактора идеального смешения.

В таких случаях говорят о множественности стационарных состояний реактора. При этом возникает дополнительная проблема устойчивости рассматриваемых стационарных состояний.

Рис. 6.4. Уравнения теплового (1, 2, 3) и материального (4) балансов
для адиабатического реактора идеального смешения при проведении
в нем необратимой экзотермической реакции (совместное решение)

Обратимая реакция первого порядка. Для обратимой реакции первого порядка А R кинетическое уравнение имеет вид

. (6.18)

Выразив в уравнении (6.18) концентрации с А и с R через с А , 0 и х А получим

В условиях равновесия для обратимой реакции первого порядка имеет место равенство скоростей прямой и обратной реакции , откуда следует, что

С учетом выражения (6.19) кинетическое уравнение обратимой реакции первого порядка примет вид

(6.20)

После подстановки выражения (6.20) в формулу (6.12) уравнение материального баланса можно представить в виде зависимости х А от Т:

(6.21)

Уравнение (6.21), как и следовало ожидать, при х А , е = 1 (т. е. для необратимой реакции первого порядка) переходит в уравнение (6.17).

Для графического решения системы уравнений материального и теплового балансов в случае обратимой реакции нужно построить график функции (6.21). График уравнения теплового баланса (6.15), не содержащего никаких кинетических параметров реакции, от вида кинетического уравнения не зависит.

В уравнении (6.21) от температуры зависят константа скорости прямой реакции k 1 , и равновесная степень превращения х А , е .

Для обратимой эндотермической реакции (∆H > 0) с ростом температуры увеличивается и константа равновесия, и равновесная степень превращения. Величина х А , рассчитанная по уравнению (6.21), при любых температурах будет меньше, чем k 1 , , и меньше, чем х А , е , т. е. грфик функции х А (Т) должен находиться на координатной плоскости (рис. 6.5, a) ниже графиков функций k 1 (Т) и х А ,e (Т).

Система уравнений материального и теплового балансов для обратимой экзотермической реакции имеет такой же вид, как и для обратимой эндотермической реакции, т. е. это уравнения (6.21) и (6.15). Однако график функции х А (Т), определяемый уравнением (6.21), будет другим. Связано это с тем, что равновесная степень превращения х А , е для экзотермических реакций с ростом температуры падает. Поэтому, построив график функции х А (Т), пользуясь при этом теми же приемами, что и для обратимой экзотермической реакции, получим кривую с максимумом (рис. 6.5, б). Абсолютное значение максимума и его положение относительно кривой определяются, с одной стороны, средним временем пребывания реагентов в реакторе τ, а с другой – состоянием химического равновесия.

Уравнение теплового баланса – прямая 1 с положительным тангенсом угла наклона. Эта прямая может пересекаться с кривой 2, отвечающей уравнению материального баланса, в одной или в нескольких точках (одно или несколько стационарных состояний).

Рис. 6.5. Уравнения теплового (1) и материального (2) балансов
для адиабатического реактора идеального смешения при проведении
в нем обратимых эндотермической (а) и экзотермической (б) реакций
(совместное решение)

Способы увеличения степени превращения реагентов при проведении реакций в адиабатическом реакторе идеального смешения. В зависимости от начальных условий (температуры на входе Т 0 , начальной концентрации с А , 0 ), соотношения объема аппарата и объемного расхода ( = V/v), а также типа химической реакции в проточном реакторе идеального смешения устанавливается некоторое стационарное состояние, характеризующееся неизменяющимися во времени значениями температуры реакционной смеси и степени превращения на выходе из аппарата. Эти значения T и x A могут быть определены на основании совместного решения уравнений материального и теплового балансов, как это было показано выше.

В промышленных условиях очень важно наиболее полно использовать исходное сырье, т. е. достичь высоких значений степени превращения. Анализ получающихся решений позволяет найти условия проведения процесса, при которых достигается оптимальная степень превращения реагентов в адиабатическом реакторе идеального смешения.

Графическое решение системы уравнений материального и теплового балансов сводится к определению точки пересечения графиков функций х А (Т), отвечающих и тому, и другому уравнениям. Более высокая степень превращения исходного сырья в адиабатическом реакторе соответствует на рис. 6.3–6.5 смещению точки пересечения в область больших значений х А . Добиться этого можно, изменяя взаимное положение кривой, отвечающей уравнению материального баланса, и прямой, соответствующей уравнению теплового баланса. Укажем возможные способы влияния на положение этих линий.

Для эндотермических реакций (необратимых и обратимых) повышения степени превращения можно добиться, прежде всего, увеличением начальной температуры T 0 , что приведет к параллельному смещению вправо прямой 1 (см. рис. 6.3 и 6.5, а).

Для необратимых экзотермических реакций увеличение температуры на входе в реактор также приведет к росту степени превращения (см. рис. 6.4, прямая 2). Одновременно это позволит избежать тройного пересечения линий 2 и 4, отвечающего случаю множественности стационарных состояний. Однако увеличение начальной температуры должно быть оправдано экономическими соображениями, так как рост степени превращения будет сопровождаться при этом и увеличением затрат на нагрев исходной реакционной смеси.

Для обратимых экзотермических реакций, проводимых в адиабатическом реакторе идеального смешения, целесообразно добиться таких условий, чтобы решение системы уравнений материального и теплового балансов соответствовало точке максимума линии 2, отвечающего уравнению материального баланса (см. рис. 6.5, б). Смещение прямой 1 вправо при возрастании начальной температуры может привести не к увеличению, а к уменьшению степени превращения. Выбор оптимальных условий проведения обратимых экзотермических реакций представляет наибольшую сложность.

Другой способ изменения положения прямой, отвечающей уравнению теплового баланса, состоит в изменении угла ее наклона. Угловой коэффициент прямой, описываемой уравнением (6.15), можно увеличить или уменьшить, изменив начальную концентрацию с А , 0 :

.

В эндотермических реакциях для повышения х A при сохранении прежней начальной температуры нужно увеличить крутизну прямой, что можно сделать уменьшением с A , 0 (это не всегда целесообразно, так как придется работать с низко концентрированными реагентами). При проведении экзотермических реакций увеличение с А , 0 приведет к росту ∆Т ад , и прямая станет более пологой.


источники:

http://helpiks.org/3-90373.html

http://pandia.ru/text/79/263/23453-10.php