Уравнение теплового баланса для помещения

Энергоэффективность систем обеспечения параметров микроклимата. Тепловой баланс помещений

Сегодня мы начинаем публиковать цикл статей, посвящённых анализу методов создания и поддержания теплового режима помещений в холодный период года. Первая статья цикла расскажет о развитии современных энергоэффективных систем создания и поддержания теплового комфорта в помещениях. По мнению авторов, это развитие требует уточнения основных закономерностей по расчёту теплопотребления зданиями.

Составляющие теплового баланса помещения

Физический смысл теплового баланса помещения в холодный период года заключается в поддержании постоянной температуры внутреннего воздуха tв [ °C] системами обеспечения параметров микроклимата. Сведение всех составляющих поступления и расхода теплоты определяет дефицит или избыток её в помещении. Тепловой баланс составляется для таких расчётных условий, когда возникает наибольший дефицит теплоты. Наличие дефицита теплоты ΔQ [Вт] показывает следующую количественную характеристику мощности системы отопления [Вт] [1]:

где Qогр — потери теплоты через наружные ограждения, Вт; Qин — расход теплоты на нагрев инфильтрующегося воздуха, Вт; Qт-б — технологические или бытовые поступления (расходы) теплоты, Вт.

Для производственных помещений промышленных зданий в (1) при расчёте мощности систем отопления логично и оправдано определять величину ± Qт-б для периодов технологических циклов с наименьшими тепловыделениями.

Формирование теплового режима в помещениях жилых и общественных зданий во многом отличается от производственных. При продолжительном отсутствии в квартире жильцов, а в общественных зданиях посетителей или обслуживающего персонала какие-либо дополнительные (бытовые) тепловыделения Qт-б отсутствуют. Поэтому они не должны учитываться при расчётах тепловых балансов данных помещений [2, 3], то есть расчётные температурные параметры воздуха должны поддерживаться при отсутствии людей и неработающем бытовом или служебном оборудовании.

Однако в отечественную нормативную литературу для снижения реальной расчётной мощности систем отопления было введено понятие теплового потока, поступающего в жилые комнаты и кухни: 21 Вт на 1 м 2 площади пола [4]; затем

он был произвольно уменьшен до 10 Вт на 1 м 2 площади пола [1]. Данное положение привело к законодательному нарушению санитарно-гигиенических норм по поддержанию минимальной расчётной температуры в жилых и общественных помещениях. Авторами нормативов по субъективному введению бытового теплового потока при расчёте теплового баланса жилого помещения подменено понятие «энергоэффективность», то есть рациональное и, по возможности, полное использования потенциала искусственно генерируемой энергии, на «энергосбережение», которое осуществляется административными методами.

Поэтому зависимость (1) для жилых и общественных зданий должна иметь следующий вид:

Формирование теплового режима в помещениях жилых и общественных зданий во многом отличается от производственных. Например, при продолжительном отсутствии в квартире жильцов, а в общественных зданиях посетителей или обслуживающего персонала какие-либо дополнительные тепловыделения отсутствуют

В сельскохозяйственных зданиях расчётный температурный режим в холодный период года возможно, как правило, создать только за счёт варьирования теплофизическими характеристиками наружных ограждений (пассивных элементов систем обеспечения параметров микроклимата). В процессе жизнедеятельности животные, птицы, хранящееся сочное растительное сырьё (картофель, овощи, фрукты) выделяют явную теплоту: физиологическую Qф или биологическую Q6. Рациональный подбор теплофизических характеристик наружных ограждений позволяет в таких помещениях отказаться от искусственно генерируемой теплоты. Поддержание расчётной внутренней температуры осуществляется за счёт утилизации явной теплоты, то есть помещения эксплуатируются как неотапливаемые с естественными источниками энергии. Для помещений таких энергопассивных производственных сельскохозяйственных комплексов уравнение теплового баланса имеет вид:

Потери теплоты отапливаемыми помещениями через ограждения

Расчётные трансмиссионные потери теплоты помещением при выборе тепловой мощности определяются как сумма потерь через все ограждения. Количество теплоты, проходящее через каждое ограждение при стационарном режиме Qогр [Вт] определяется по формуле Фурье [1] (расшифровка обозначений в формуле (4) приведена далее в статье):

Основным критерием теплотехнических показателей энергоэффективных зданий должно быть снижение затрат тепловой энергии системами обеспечения параметров микроклимата.

Не претендуя на полноту освещения всех вопросов по эффективному использованию теплоты, предлагаемый в статье анализ физических процессов переноса теплоты через ограждения позволяет уточнить факторы формирования температурного режима помещений.

Рассмотрим соответствие закономерностей переноса теплоты и логики протекания этих процессов по основополагающей формуле (4) некоторым современным широко рекламируемым (в том числе в нормативных источниках) рекомендациям по рациональному использованию подаваемой в помещения тепловой энергии.

Расчётная площадь каждой ограждающей конструкции А [м 2 ] вычисляется с соблюдением определённых условно принятых правил обмера, которые стабильны с первой половины ХХ века. В них заложены особенности переноса теплоты теплопроводностью в каждом из конструктивных видов ограждений.

Положение ограждения относительно наружного воздуха (коэффициент n) учитывается для ограждений, отделяющих отапливаемые помещения от неотапливаемых (чердаки, подвалы, скотные дворы в сельских домах).

Температура в неотапливаемых помещениях всегда выше наружной. Поэтому потери теплоты уменьшаются и соответствуют разности температур (например, для чердака tчер):

Значения понижающего расчётную разность температур коэффициента n, приведённые в нормах [5], несмотря на их ориентировочный характер, показали свою востребованность и необходимость в практических расчётах. Термодинамическая основа коэффициента n показывает возможную степень использования энергетического потенциала теплоносителя системы отопления путём последовательного использования как высокопотенциальной, так и низкопотенциальной энергии. Многие способы наиболее полной утилизации поданной в здание теплоты характерны для индивидуальных зданий, имеющих чердаки, подполья, сени, тамбуры, пристроенные животноводческие помещения. В нормативных документах следует расширить область использования коэффициента n, разработать и внести его значения для многоквартирных домов. Например, значения n отсутствуют: для лифтовых холлов домов с наружными пожарными лестницами, для «тёплых» чердаков с естественной или механической вытяжной вентиляцией, для застеклённых лоджий и т.п.

Об этом цикле статей

Представленный в данном цикле статей анализ методов создания и поддержания теплового режима помещений в холодный период года не является альтернативой общепринятых апробированных практикой методик расчёта, конструирования и эксплуатации систем обеспечения параметров микроклимата. Необходимость анализа современных тенденций формирования комфортного теплового режима помещений вызвана повышением требований по энергосбережению в строительстве. Однако предлагаемые новые решения по экономии тепловой энергии (даже включённые в нормативную литературу) не всегда соответствуют физическим законам тепломассопереноса, санитарным нормам, а иногда и здравому смыслу. При этом, жёстко регламентируя применение одних технических решений, действующие нормы не учитывают их совместную работу с другими элементами эксплуатируемых систем.

Нормативные документы, регламентирующие проектирование и эксплуатацию систем обеспечения параметров микроклимата, должны включать научно систематизированные, физически обоснованные и экономичные схемы систем, порядок их выбора и расчёта, рекомендации по реконструкции объектов, не позволяющие различной их трактовки. С другой стороны, они должны позволять отказываться от одних средств автоматизации и кажущегося «энергосбережения», являющихся обязательными по нормативным документам, на иные, способные повысить энергетические и экономические показатели систем. Этот фактор является особо актуален с учётом появившегося в области принятия инженерных решений не проверенных в отечественной практике зарубежных стереотипов, навязанных рекламой или лоббированием частными компаниями.

Проведённый анализ нормативной и справочной литературы по энергосбережению в строительстве подготовлен в рамках выполнения НИР «Разработка и научное обоснование теплофизических закономерностей переноса теплоты и влаги в неотапливаемых производственных сельскохозяйственных зданиях» с финансированием из средств Минобрнауки России, в рамках базовой части государственного задания на научные исследования.

Разность температуры внутреннего tв и наружного воздуха tн5 [°C] в холодный период года с коэффициентом обеспеченности kоб = 0,92 в формуле (4) определяет максимальную величину переноса теплоты из помещения в атмосферу. Расчётные значения температуры (tв каждого из помещений жилых зданий приведены в нормах [6]. Современная квартира представляет собой единый комплекс обитания семьи, поэтому практически невозможно поддерживать стабильный индивидуальный температурный режим в каждом из помещений, но для фиксации общего количества необходимой подаваемой в квартиру теплоты это различие имеет определённое значение.

Более сложным является расчёт потерь или поступлений теплоты через внутренние ограждения смежных помещений с различной расчётной температурой. Потери или поступления теплоты допускается не учитывать, если разность температуры в этих помещениях не более 3 °С [1]. В научной и справочной литературе не обнаружено теплотехнических и каких-либо иных объяснений субъективному снижению существовавшей ранее разности температур от 5 до 30 °C. Следствием является возникновение ряда практически тупиковых расчётных ситуаций. Например, расчёт нестационарного по функциональному назначению температурного режима ванных, совмещённых туалетов (25 °C) и окружающих помещений (18-20 °C).

Не изученной до практического внедрения является методика нормирования и теплофизического расчёта количественных показателей ограждений между смежными помещениями с различной расчётной температурой.

Они важны не только по количественным характеристикам переноса теплоты, но и по стабилизации влажностного состояния внутренних ограждений. Необходимым и обязательным условием должна быть недопустимость наблюдаемой на практике конденсации водяных паров на внутренних поверхностях ограждений смежных помещений с более высокой температурой. Характерный пример, ограждение между кухней tв = 20 °C) и лестничной клеткой в многоэтажных домах с лифтовыми холлами tв = 16 °C) и в жилых домах с неотапливаемыми лестничными клетками tв = 5 °C). Только для единственного последнего случая СНиП 23-02-2003 [5] при разности расчётных температур смежных помещений 6 °С и более обязывает нормировать и, соответственно, конструктивно менять ограждающие конструкции.

Ориентированные на другие стороны горизонта наружные ограждения получают в холодный период года меньшее количество лучистой энергии, вследствие чего их наружные поверхности имеют более низкую температуру и потери теплоты через них увеличиваются

Добавки к основным потерям теплоты отапливаемых помещений (Σβ, доли), то есть определение реальных потерь теплоты отапливаемым помещением, относится до настоящего времени к наименее изученному, субъективно трактуемому вопросу. Количественные характеристики добавок к основным потерям теплоты составляют [1]:

Добавки на ориентацию по сторонам горизонта βст.г, согласно нормам, принимаются на все вертикальные и наклонные (проекции на вертикаль) ограждения. Условно из-за наличия солнечной радиации за расчётную принята ориентация наружных ограждений на юг и юго-запад (βст.г = 0). Считается, что ориентированные на другие стороны горизонта наружные ограждения получают в холодный период года меньшее количество лучистой энергии, вследствие чего их наружные поверхности имеют более низкую температуру и потери теплоты через них увеличиваются. В то же время наиболее холодный период суток приходится на ночные и предутренние часы при отсутствии лучистого теплопритока, а теплоинерционность непрозрачных ограждающих конструкций препятствует колебаниям суточных температур их внутренних поверхностей. Данные добавки βст.г существуют с начала прошлого века [3], считаются традиционными и незыблемыми, однако они противоречат физическому смыслу процесса определения максимального дефицита теплоты в помещении и не должны учитываться при расчётах мощности систем отопления.

Расчёт систем кондиционирования и вентиляции.

Тепловой баланс помещения

Расчёт системы кондиционирования и вентиляции начинается с составления теплового баланса помещения. На данном этапе необходимо учесть основные критерии, оказывающие непосредственное воздействие на воздушную среду помещения.

Определим все поступления и потери тепла в объёме помещения. Тепловые нагрузки можно условно разделить на два основных типа:

1) Внешние тепловые нагрузки.

— Изменение состояния воздуха внутри помещения, возникающее из-за разности температур уличного воздуха и внутреннего. Данные изменения могут носить как положительный характер (теплопоступления), так и отрицательный (теплопотери). Происходит это за счёт теплообмена через ограждающие конструкции (окна, стены, полы, кровля, перекрытия и т.д.)

— Поступление тепла за счёт солнечного излучения. Данный вид нагрузок всегда только положительный и выражается в виде ощутимого человеком тепла. Такие теплопоступления должны быть учтены в летний период года. В зимний период их можно принять незначительными. Также стоит учесть, что есть они только в дневное время.

— Приток наружного воздуха за счёт естественного теплообмена. В общем случае, конструкции помещений таковы, что всегда остаётся возможность притока воздуха через щели и зазоры. Данный вид нагрузок носит переменный характер. Зимой это приток воздуха с отрицательной температурой, летом – наоборот.

2) Внутренние тепловые нагрузки.

— Тепловыделения от технологического оборудования и бытовых приборов ( компьютеры, печи, промышленное оборудование и пр.), расположенных внутри помещения.

— Тепловыделения от ламп освещения. Данный тип тепловыделений стоит не учитывать, если установлены энергосберегающие лампы или светодиодные.

— Теплопоступления от людей в помещении.

— Специфичные источники тепла для данного помещения (производственные линии, продукты горения и т.д, от остывающей пищи).

Нагрузки второго типа всегда положительны, поэтому летом их нужно компенсировать работой системы кондиционирования. В зимний же период они позволят снизить затраты на работу системы отопления.

Теплопоступления и теплопотери за счёт разности температур наружного и внутреннего воздуха, в первом приближении, можно определить по известным зависимостям, изложенным в СП 50.13320.2013 и СП 60.13330.2016.

Количество тепла Q, передаваемое через единичный элемент конструкции здания (стена, окно, пол и т.д.), определяется по формуле:
Q=F*k*(tн-tв)*Ψ, где

F – площадь элемента конструкции м^2;
K – коэффициент теплопередачи элемента конструкции (Вт/м*K);
tв — расчётная температура внутреннего воздуха, С;
tн — расчётная температура наружного воздуха, С;
Ψ – поправочный коэффициент, который выбирается согласно СП 50.13320.2013 и СП 60.13330.2016. Данный коэффициент является составным и включает в себя

— поправку на ориентацию ограждения на сторону света;
— поправка на этажность;
— поправка на обдуваемость ветром;
— поправка на проникновение в помещение наружного воздуха через неплотности;
— поправка на солнечную радиацию.

Важным фактором является цвет наружных стен, т.к. коэффициент поглощения тепла наружных стен может достигать 0,9 для тёмных оттенков.
Важным элементом теплового баланса является приток тепла от солнечного излучения. Для зданий с стеклянными витражами (бизнес-центры, шоу-румы, и т.д.) тепловая нагрузка солнечного излучения может составлять до 50% всего теплового баланса помещения.

Поступления тепла учитываются для летних и переходных периодов с средней дневной температурой от +10 С.
Количество теплоты (Вт/м2*ч) поступающего от солнечной радиации для различных типов остеклённых поверхностей приведены в нижеследующих таблицах:

За искомое значение тепла от солнечного излучения принимают большее из:

1) Тепло, поступающее через одну из остеклённых поверхностей, имеющую наибольшую площадь или освещаемую большую часть времени в течение суток.
2) 70% от тепла, поступающего через две взаимно перпендикулярные остеклённые поверхности в помещении.

Как не трудно заметить, приведённые выше правила требуют больших трудозатрат. В практике проектирования систем вентиляции и кондиционирования воздуха существует отработанная экспресс-методика расчёта теплового баланса. Она подходит для случаев, когда необходимо быстро оценить мощность системы кондиционирования.

Теплопоступления от разности температур внутреннего и наружного воздуха, а также от солнечной радиации принято рассчитывать согласно формуле

V – объём помещения м3;
qуд – удельная тепловая нагрузка, выбираемая из следующего списка:

30-35 Вт/м3 – солнечное излучение в помещение не поступает;
35 Вт/м3 – среднее значение;
35-40 Вт/м3 – конструкция помещения содержит большое остекление с солнечной стороны.

Теплопоступления Q2 от работающего офисного оборудования и орг. техники принимаются как 300 Вт на один компьютер (или 30 % от общей мощности работающего в помещении оборудования). Если в помещении есть доп. тепловыделяющее оборудование (электроплиты, газовые плиты, радиаторы отопления), эти теплопоступления также необходимо учесть.

Теплопоступления Q3 от находящихся в помещении людей выбираются в зависимости от характера деятельности людей. Для офисных помещений Q3 рассчитывают исходя из 100 Вт на одного человека. Для помещений, где люди занимаются физической деятельностью теплоприток на одного человека принимают за 150-300 Вт в зависимости от категории работ согласно СП.

Суммируем полученные величины: Qобщ= Q1+Q2+Q3.

К этой сумме нужно прибавить 20% на неучтённые теплопритоки.

Как рассчитывается тепловой баланс помещения — УКЦ

Раздел объясняет, что такое тепловой баланс помещения, описывает основные источники поступления и потерь тепла. Приведен принцип расчета теплового баланса. Дается формула упрощенного расчета теплового баланса для бытового кондиционера и пример расчета поступления тепла в офисном помещении.

Для чего нужен расчет теплового баланса?

При проектировании систем кондиционирования, вентиляции и отопления необходимо с достаточной точностью рассчитать их мощность. В теплый период года поступление тепла в помещение избыточно, и излишнее тепло должно удаляться системой кондиционирования. В холодный период потери тепла превышают его поступление, и недостаток тепла должны компенсировать обогревательные приборы.

Пример: если температура на улице ниже комнатной, например -40°С, а внутри помещения комфортные +20 °С, то теплота начинает уходить, образуя тепловой поток, обращенный наружу. Предположим, из помещения уходит 500 Вт. Чтобы температура внутреннего воздуха осталась на уровне +20°С, необходимо подать в помещение эти 500 Вт. Если в помещение подавать 400 Вт, то тепловое равновесие между теплопоступлениями и теплопотерями установится на более низком уровне, +18°С. Если подавать 600 Вт, то на более высоком: +22°С.

На здание одновременно действуют несколько факторов поступления тепла: солнечное излучение, параметры наружного воздуха, а также внутренние теплопоступления. Поддержание заданных условий усложняется тем, что теплопоступления не постоянны, а меняются в течение суток. Для правильного подбора климатической системы важно учесть все факторы, влияющие на баланс тепла и влаги в помещении.

Источники теплопоступления и теплопотерь

  1. Наружные нагрузки — возникают вне помещения, делятся на несколько групп:

(1) Теплопередача через стены, потолки, полы. Она зависит от разности внутренней и внешней температуры и степени теплоизоляции здания. Летом температура в здании ниже, чем на улице, и теплопоступление положительно. Зимой же разность температур снаружи здания и внутри него отрицательна, и поток тепла направлен из помещения вовне.

(2) Поступление тепла от излучения Солнца через застекленные проемы. Теплопоступление от излучения всегда положительно (или равно нулю, если застекленных проемов нет). Летом эту тепловую нагрузку надо компенсировать. Количество теплоты солнечной радиации зависит от формы и размеров световых проемов, типа заполнения проемов, ориентации проема по отношению к сторонам света и др. параметров.

(3) Теплопоступления от внешнего воздуха, проникающего в помещение. Воздух попадает в помещение при вентиляции, а также может проникать через неплотности проемов (обычно при проектировании системы кондиционирования в помещении предусматривается избыточное давление, чтобы воздух не инфильтровался). Параметры наружного воздуха (температура и влажность) сильно меняются в течение года, но практически никогда не совпадают с требуемыми в помещении параметрами. Поступление тепла от внешнего воздуха может быть как положительным, так и отрицательным, в зависимости от времени года.

Внутренние тепловые нагрузки — возникают в помещении, зависят от назначения помещения и делятся на несколько типов:

(1) Тепло, выделяемое людьми. Оно зависит от количества людей и рода их занятий, а также условий в помещении.

(2) Тепло, выделяемое осветительными приборами: люминесцентными лампами и лампами накаливания. Эта величина зависит от мощности освещения, типа ламп и способа их расположения.

(3) В производственных помещениях тепло могут выделять горячие материалы (или поглощать — холодные), а также тепловыделение может происходить при сгорании и химических реакциях.

(4) Тепло, выделяемое электроприборами: * в жилых помещениях — бытовыми приборами: холодильниками, плитами и т.п.

* в офисных помещениях — компьютерами, принтерами, копирами и т.п.

* в производственных помещениях — оборудованием, электродвигателями и т.п.

Подробный расчет теплового баланса приведен в главе «Расчет систем кондиционирования и вентиляции» книги «Системы вентиляции и кондиционирования. Теория и практика» (см. основную литературу).

Упрощенный расчет теплового баланса для бытового кондиционера

Для небольших помещений и несложных систем вентиляции и кондиционирования на основе простого оборудования (например, сплит-система) применяют упрощенный тепловой баланс. В таком случае нет необходимости в долгих и сложных расчетах теплопотерь и теплопоступлений. Для подбора модели кондиционера подходящей мощности надо приблизительно подсчитать избыточное тепло, поступающее в помещение.

Основные источники тепла:

    Теплопоступления за счет разницы внешней и внутренней температуры, а также тепло солнечного излучения:

Здесь h — высота потолка в помещении, S — площадь помещения, q — удельная теплота (выбирается в зависимости от естественной освещенности помещения. Если помещение затенено, то q = 30 Вт/кв.м., если средняя освещенность, то q = 35 Вт/кв.м., а для помещений с большим остеклением с солнечной стороны q = 40 Вт/кв.м.)

Теплопоступления от техники Q2.

Для офисных помещений — 300 Вт на каждый компьютер (или 30% от мощности другого оборудования. Конечно, если включено нагревательное оборудование, нужно учитывать его реальную мощность обогрева). Замечание: Если в помещении используется дополнительное оборудование, которое выделяет тепло (электроплиты и т.д.), в расчете нужно учесть его мощность

Теплопоступления от людей Q3.

Обычно считают, что при сидячей работе (в офисе) человек выделяет 100 Вт тепла, а при физических нагрузках 200-300 Вт.

К сумме теплопоступлений, рассчитанных в пунктах 1 — 3, нужно прибавить примерно 20% на неучтенные притоки тепла.

Итак, Q = 1.2*(Q1 + Q2 + Q3)

Пример: комната 15 кв.м, высота потолков 3 м, средняя освещенность, 3 человека работают за компьютерами. Теплопоступление: Q = 1.2*(15*3*35 + 3*300 + 3*100) Вт = 3,3 кВт. Это поступление тепла и должен компенсировать кондиционер.


источники:

http://www.system-p.ru/article1

http://hvac-school.ru/menedzhment_marketing/teoreticheskie_svedenija_1/kak_rasschitivaetsja_teplovoi/