Уравнение теплового баланса для процесса конденсации

Решение задач на теплообмен с использованием уравнения теплового баланса (методические рекомендации)

Разделы: Физика

Пособие рекомендовано учащимся, желающим получить практические навыки в решении задач на теплообмен, и может быть полезным для учителей и абитуриентов.

При соприкосновении тел, имеющих разные температуры, между этими телами происходит теплообмен. С точки зрения молекулярно-кинетической теории, это объясняется так: молекулы более нагретого тела имеют большую кинетическую энергию, чем молекулы тела, менее нагретого. При “столкновениях” молекул соприкасающихся тел происходит процесс выравнивания их средних кинетических энергий. Молекулы более нагретого тела теряют часть своей кинетической энергии, при этом нагретое тело будет остывать. Кинетическая энергия молекул холодного тела возрастает, поэтому температура этого тела будет увеличиваться. В конечном итоге кинетические энергии молекул обоих тел сравняются, и температуры тел станут одинаковыми. На этом теплообмен прекращается.

Энергию, которую тело получает или отдаёт в процессе теплообмена, называют количеством теплоты (Q).

Количество теплоты, как и все другие виды энергии, измеряется в системе СИ в Джоулях: [Q] = Дж. (Здесь и в дальнейшем единицы измеряются в системе СИ.)

Нагревание или охлаждение

При нагревании или охлаждении тела количество теплоты, поглощаемое или выделяемое им, рассчитывается по формуле:

(t2 – t1) – разность температур тела,° С (или К);

с – удельная теплоёмкость вещества, из которого состоит тело,

Удельная теплоёмкость вещества – это количество теплоты, которое нужно сообщить одному килограмму данного вещества, чтобы увеличить его температуру на 1° С (или это количество теплоты, которое выделяет один килограмм данного вещества, остывая на 1° С).

Значения удельных теплоемкостей других веществ можно найти в справочниках, а также в школьном учебнике или задачнике.

При нагревании тела его внутренняя энергия увеличивается. Это требует притока энергии к телу от других тел. Значит, оно поглощает некоторое количество теплоты, принимая его от других тел, участвующих в теплообмене.

При охлаждении тела его внутренняя энергия уменьшается. Поэтому остывающее тело отдаёт кому-либо некоторое количество теплоты.

Обычно конечную температуру, установившуюся в результате теплообмена, обозначают греческой буквой (тэта).

В формуле (1) произведение cm для каждого конкретного тела есть величина постоянная. Её называют теплоёмкостью тела и обозначают С:

Размерность теплоемкости: Теплоемкость тела показывает, сколько энергии нужно подвести к данному телу, чтобы нагреть его на 1° С (или сколько энергии выделяет это тело, остывая на 1° С).

Теплообмен между телами, имеющими одинаковые температуры, не происходит, даже если контактируют вещества, находящиеся в разных агрегатных состояниях. Например, при температуре плавления (0° С) лёд и вода могут находиться бесконечно долго, при этом количество льда и количество воды останутся неизменными. Аналогично ведут себя пар и жидкость, находящиеся при температуре кипения. Теплообмен между ними не происходит.

Плавление или кристаллизация

Если при нагревании тела его температура достигнет температуры плавления, то начинает происходить процесс перехода этого вещества из твердого состояния в жидкое. При этом идут изменения в расположении и характере взаимодействия молекул. Температура при плавлении не изменяется. Это означает, что средние кинетические энергии молекул жидкости и твердого тела при температуре плавления одинаковы. Однако внутренняя энергия тела при плавлении возрастает за счет увеличения энергии взаимодействия молекул. Количество теплоты, поглощаемое телом при плавлении, рассчитывается по формуле

(3)

где m – масса тела, кг;

– удельная теплота плавления,

При кристаллизации, наоборот, внутренняя энергия тела уменьшается на величину и эта теплота данным телом выделяется. Она поглощается другими телами, участвующими в теплообмене.

Удельная теплота плавления показывает, сколько энергии нужно сообщить одному килограмму данного вещества, взятого при температуре плавления, чтобы полностью превратить его при этой температуре в жидкость (или сколько энергии выделяет 1 кг жидкости, взятой при температуре кристаллизации, если вся она при этой температуре полностью превратится в твёрдое тело).

Удельную теплоту плавления любого вещества можно найти в справочниках. Для льда же

Температура плавления у каждого вещества своя. Её также можно найти в справочниках. Важно подчеркнуть, что температура плавления вещества равна температуре кристаллизации этого же вещества. У льда tпл = 0° С.

Кипение или конденсация

При достижении жидкостью температуры кипения начинает происходить другой фазовый переход – кипение, при котором расстояния между молекулами значительно увеличиваются, а силы взаимодействия молекул уменьшаются. Вся подводимая к жидкости теплота идет на разрыв связей между молекулами. При конденсации пара в жидкость, наоборот, расстояния между молекулами значительно сокращаются, а силы взаимодействия молекул увеличиваются. Для кипения жидкости энергию к жидкости нужно подводить, при конденсации пара энергия выделяется. Количество теплоты, поглощаемое при кипении или выделяемое при конденсации, рассчитывается по формуле:

где m – масса тела, кг; L – удельная теплота парообразования,

Удельная теплота парообразования показывает, сколько энергии нужно сообщить одному килограмму жидкости, взятой при температуре кипения, чтобы при этой температуре полностью превратить её в пар (для конденсации: сколько энергии выделяет один килограмм пара, взятого при температуре конденсации, полностью превращаясь в жидкость).

При одинаковом давлении температура кипения и температура конденсации одного и того же вещества одинаковы.

Температуры кипения и удельные теплоты парообразования также можно найти в справочниках. Для воды же они соответственно равны: рис. 9 (при нормальном атмосферном давлении).

Уравнение теплового баланса

Тела, участвующие в теплообмене, представляют собой термодинамическую систему. Термодинамическая система называется теплоизолированной, если она не получает энергию извне и не отдаёт её; теплообмен происходит только между телами, входящими в эту систему. Для любой теплоизолированной системы тел справедливо следующее утверждение: количество теплоты, отданное одними телами, равно количеству теплоты, принимаемому другими телами.

Это утверждение описывает частный случай закона сохранения и превращения энергии в применении к процессу теплообмена. А формула (5) является одним из видов уравнения теплового баланса.

При решении задач с помощью данного вида уравнения теплового баланса в формуле (1) в качестве t2 следует брать большую температуру, а в качестве t1 – меньшую. Тогда разность (t2 – t1) будет положительна и всё произведение cm(t2–t1) также будет положительным. Все теплоты, отданные и полученные, будут положительными.

Уравнение теплового баланса можно записать и в таком виде:

где n – количество тел системы.

Алгебраическая сумма всех количеств теплоты (поглощенных и выделенных) в теплоизолированной системе равна нулю.

Q1, Q2, …, Qn – это теплоты, поглощаемые или выделяемые участниками теплообмена. Очевидно, что в этом случае какие-то теплоты должны быть положительны, а какие-то – отрицательны. При записи уравнения теплового баланса в виде (6) всегда t2 – конечная температура, а t1 – начальная.

Если тело нагревается, то разность (t2 – t1) положительна и все произведение cm(t2 – t1) положительно. То есть Q > 0 тогда, когда теплота к данному телу подводится.

А если t2 0; если тело выделяет энергию (кристаллизация, конденсация), то Q

Проведём анализ:

Вода и калориметр находились в тепловом равновесии, поэтому они имели одинаковую температуру: t1 = t2 = 20° С.

При опускании в воду с температурой 20° С свинцового тела с температурой 90° С между водой и свинцом будет происходить теплообмен. Свинец будет остывать, а вода — нагреваться. В этом же процессе участвует и калориметр, который, как и вода, будет тоже нагреваться.

Изменение температур тел с течением времени удобно изображать на графике зависимости t(t ).

Отрезок АВ соответствует графику изменения температуры свинцового тела. Стрелка, идущая от него, показывает, что, остывая, свинец выделяет энергию Q3.

Два параллельных отрезка СВ соответствуют графикам изменения температур калориметра и воды. Стрелки, идущие к ним, показывают, что для нагревания калориметра и воды требуется энергия Q1 и Q2, которую они поглощают.
Решим задачу с использованием уравнения теплового баланса в виде (5):

Решим задачу с использованием уравнения теплового баланса в виде (6):

Ответ: Вода нагреется до 24° С.

Предлагаю читателю самостоятельно сделать проверку размерности.

Фазовые переходы и уравнение теплового баланса

теория по физике 🧲 термодинамика

Фазовые переходы — это термодинамические процессы, приводящие к изменению агрегатного состояния вещества.

Плавление и отвердевание

Для расчета количества теплоты, необходимого для процесса плавления, следует применять формулу:

m — масса вещества, λ (Дж/кг) — удельная теплота плавления.

Плавление каждого вещества происходит при определенной температуре, которую называют температурой плавления. Все проводимое тепло идет на разрушение кристаллической решетки, при этом увеличивается потенциальная энергия молекул. Кинетическая энергия остается без изменения и температура в процессе плавления не изменяется.

Удельная теплота плавления показывает, какое количество теплоты необходимо сообщить 1 кг данного вещества, чтобы перевести его из твердого состояния в жидкое при условии, что оно уже нагрето до температуры плавления. В процессе отвердевания 1 кг данной жидкости, охлажденной до температуры отвердевания, выделится такое же количество теплоты.

Внимание! Удельная теплота плавления — табличная величина.

Определение Отвердевание, или кристаллизация — переход состояния из жидкого состояния в твердое (это процесс, обратный плавлению).

Отвердевание происходит при той же температуре, что и плавление. В процессе отвердевания температура также не изменяется. Количество теплоты, выделяемое в процессе отвердевания:

Парообразование и конденсация

Количество теплоты, необходимое для процесса кипения, вычисляют по формуле:

m — масса вещества, r (Дж/кг) — удельная теплота парообразования.

Парообразование происходит при определенной температуре, которую называют температурой кипения. В отличие от испарения, процесс парообразования идет со всего объема жидкости. Несмотря на то, что к кипящему веществу подводят тепло, температура не изменяется. Все затраты энергии идут на увеличение промежутком между молекулами. Температура кипения зависит от рода вещества и внешнего атмосферного давления.

Удельная теплота парообразования показывает, какое количество теплоты необходимо затратить, чтобы перевести в пар 1 кг жидкости, нагретой до температуры кипения. Такое же количество теплоты выделится в процессе конденсации 1 кг пара, охлажденного до температуры конденсации.

Внимание! Удельная теплота парообразования — табличная величина.

Определение Конденсация — процесс, обратный кипению. Это переход вещества из газообразного состояния в жидкое.

Конденсация происходит при температуре кипения, которая также не изменяется во время всего процесса. Количество теплоты, выделяемое в процессе конденсации:

Тепловые процессы при нагревании и охлаждении

Все фазовые переходы, а также процессы нагревания и остывания вещества можно отобразить графически. Посмотрите на график фазовых переходов вещества:

Он показывает зависимость температуры вещества от времени в процессе его нагревания и остывания. Опишем процессы, отображаемые на графике, в таблице.

Q = c т m ( t п л − t 0 )

ст — удельная теплоемкость вещества в твердом состоянии.

Q = c ж m ( t к и п − t п л )

сж — удельная теплоемкость вещества в жидком состоянии.

Q = c п m ( t − t к и п )

сп — удельная теплоемкость вещества в газообразном состоянии.

Q = c п m ( t к и п − t )

Q = c ж m ( t п д − t к и п )

Q = c т m ( t 0 − t п л )

Внимание! На участках 2–3 и 9–10 вещество частично находится в жидком и твердом состояниях, а на 4–5 и 7–8 — в жидком и газообразном.

Частные случаи тепловых процессов

ПроцессЧто происходитКоличество выделенной теплоты
1–2Нагревание твердого тела
2–3Плавление при температуре плавления (tпл)
3–4Нагревание жидкости
4–5Кипение при температуре кипения (tкип)
5–6Нагревание пара
6–7Охлаждение пара
7–8Кипение при температуре кипения (tкип)
8–9Охлаждение жидкости
9–10Отвердевание при температуре плавления (tпл)
10–11Охлаждение твердого тела

Q = c л m ( t п л − t л ) + λ m

cл — удельная теплоемкость льда, tл — начальная температура льда.

Q = c л m ( t п л − t л ) + λ m + c в m ( t в − t п л )

cв — удельная теплоемкость воды.

Q = λ m + c в m ( t к и п − t п л ) + r m

Q = c в m ( t к и п − t в ) + r m 2 . .

Подсказки к задачам

Что происходитГрафикФормула количества теплоты
Полностью растопили лед, имеющий отрицательную температуру.
Лед, взятый при отрицательной температуре, превратили в воду при комнатной температуре.
Взяли лед при температуре 0 о С и полностью испарили.
Взяли воду при комнатной температуре и половину превратили в пар.
Единицы измеренияТемпературу можно оставлять в градусах Цельсия, так как изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах.
КипятокВода, которая при нормальном атмосферном давлении имеет температуру в 100 о С.
Объем воды 5 лm = 5 кг, так как:

m = ρ V =10 3 · 5 · 10 − 3 м 3 = 5 к г

Внимание! Равенство V (л) = m (кг) справедливо только для воды.

Пример №1. Какое количество теплоты нужно сообщить льду массой 2 кг, находящемуся при температуре –10 о С, чтобы превратить его в воду и нагреть ее до температуры +30 о С?

Можно выделить три тепловых процесса:

  1. Нагревание льда до температуры плавления.
  2. Плавление льда.
  3. Нагревание воды до указанной температуры.

Поэтому количество теплоты будет равно сумме количеств теплоты для каждого из этих процессов:

Q = Q 1 + Q 2 + Q 3

Q = c л m ( 0 − t 1 ) + λ m + c в m ( t 2 − 0 )

Удельные теплоемкости и удельную теплоту плавления смотрим в таблицах:

  • Удельная теплоемкость льда = 2050 Дж/(кг∙К).
  • Удельная теплоемкость воды = 4200 Дж/(кг∙К).
  • Удельная теплота плавления льда = 333,5∙10 3 Дж/кг.

Q = 2050 · 2 ( 0 − ( − 10 ) ) + 333 , 5 · 10 3 · 2 + 4220 · 2 · 30 = 961200 ( д ж ) = 961 , 2 ( к Д ж )

Уравнение теплового баланса

Суммарное количество теплоты, которое выделяется в теплоизолированной системе равно количеству теплоты (суммарному), которое в этой системе поглощается.

Математически уравнение теплового баланса с учетом знаков количества теплоты записывается так:

Q о т д = − Q п о л

Отданное количество теплоты меньше нуля (Qотд 0).

Подсказки к задачам на уравнение теплового баланса

Теплообмен происходит в калориметреПотерями энергии можно пренебречь.
Жидкость нагревают в некотором сосудеНачальные и конечные температуры жидкости и сосуда совпадают.
В жидкость опускают термометрЧерез некоторое время он покажет конечную температуру жидкости и термометра.
Мокрый снегСодержит воду и лед при 0 о С. Учтите, что лед плавится, если он находится при температуре 0 о С и получает энергию от более нагретого тела. Вода кристаллизируется при температуре 0 о С, если она отдает энергию более холодному телу. Если лед и вода находятся при температуре 0 о С, то никаких агрегатных переходов между ними не происходит.

Частные случаи теплообмена

В воду комнатной температуры бросили ком снега, содержащий некоторое количество воды, после чего установилась некоторая положительная температура. Уравнение теплового баланса:

Q 1 + Q 2 + Q 3 = 0

c в m в 1 ( t − t в 1 ) + c в m в 2 ( t − 0 ) + λ m л + c в m л ( t − 0 ) = 0

Для получения некоторой положительной температуры воды используют горячую воду и лед, имеющий отрицательную температуру. Уравнение теплового баланса:

c в m в ( t − t в ) + c л m л ( 0 − t л ) + λ m л + c в m л ( t − 0 ) = 0

В воду комнатной температуры бросают раскаленное твердое тело, в результате часть воды испаряется. Уравнение теплового баланса:

c т m т ( 100 − t т ) + c в m в ( 100 − t в ) + r m п = 0

Воду комнатной температуры нагревают до кипения, вводя пар при t = 100 о С. Уравнение теплового баланса:

− r m п + c в m в ( 100 − t в ) = 0

Лед, имеющий температуру плавления, нагревают до положительной температуры, вводя пар при t = 100 о С. Уравнение теплового баланса:

− r m п + c в m п ( t − t к и п ) + λ m л + c в m л ( t − t п л ) = 0

Пример №2. В кастрюлю, где находится вода объемом 2 л при температуре 25 о С, долили 3 л кипятка. Какая температура воды установилась?

Количество теплоты, отданное кипятком, равно количеству теплоты, принятому более прохладной водой. Поэтому:

c m 1 ( t − t 0 ) = − c m 2 ( t − t к и п )

m 1 ( t − t 0 ) = − m 2 ( t − t к и п )

m 1 t + m 2 t = m 1 t 0 + m 2 t к и п

( m 1 + m 2 ) t = m 1 t 0 + m 2 t к и п

t = m 1 t 0 + m 2 t к и п m 1 + m 2 . .

t = 2 · 25 + 3 · 100 2 + 3 . . = 350 5 . . = 70 ( ° C )

Взаимные превращения механической и внутренней энергии

Если в тексте задачи указан процент одного вида энергии, перешедший в другой, то он указывается в виде десятичной дроби перед этой энергией, которой тело обладало вначале.

Частные случаи закона сохранения энергии

m v 2 2 . . = c m Δ t

0 , 5 ( m v 2 0 2 . . − m v 2 2 . . ) = c m Δ t

m v 2 2 . . = c m Δ t + λ m

0 , 6 m g h = c m Δ t + r m

q m т о п = m р g h

0 , 25 q m т о п m с v 2 2 . .

Пример №3. Свинцовая дробинка, летящая со скоростью 100 м/с, попадает в доску и входит в нее. 52% кинетической энергии дробинки идет на ее нагревание. На сколько градусов нагрелась дробинка? Удельная теплоемкость свинца 130 Дж/(кг∙К).

Запишем закон сохранения энергии для этого случая:

0 , 52 m v 2 2 . . = c m Δ t

Δ t = 0 , 52 v 2 2 c . . = 0 , 52 · 100 2 2 · 130 . . = 20 ( К )

Примеры КПД

При неупругом ударе о стенку пуля нагрелась
Тело падает с некоторой высоты и в момент падения нагревается
В результате того, что пуля пробивает стену, ее скорость уменьшается, 50% выделившейся при этом энергии идет на нагревание пули
Летящая пуля при ударе о стенку расплавилась. Начальная температура пули меньше температуры плавления
Капля воды, падая с некоторой высоты, в момент удара испарилась. Температура капли у поверхности земли меньше температуры кипения. На нагрев пошло 60% выделившейся механической энергии
Вследствие сгорания топлива ракета поднялась на некоторую высоту
Вследствие сгорания топлива снаряд приобрел некоторую скорость, и на это было затрачено 25% энергии

Q п о л е з н = c m Δ T

Q п о л е з н = c m Δ T + r m

( п р о и з в е д е н и е м о щ н о с т и н а в р е м я )

η = c m Δ T P t . . 100 %

Q п о л е з н = c m Δ T

Q з а т р = q m т о п

η = c m Δ T q m т о п . . 100 %

A п о л е з н = N t = N s v . .

Q з а т р = q m т о п

η = c m Δ T v q m т о п . . 100

E п о л е з н = m v 2 2 . .

Q з а т р = q m п о р

η = m v 2 2 q m п о р . . 100

Внимание! Если в задаче указано время, в течение которого происходит один тепловой процесс, а спрашивают о времени протекания другого, то считайте, что мощность нагревателя или холодильника постоянна:

Q 1 t 1 . . = Q 2 t 2 . .

Пример №4. Для нагревания на электроплитке некоторого количества воды от 20 до 100 о С потребовалась 21 минута. Сколько времени после этого необходимо для полного испарения воды? Удельная теплоемкость воды 4200 Дж (кг∙К), удельная теплота парообразования 2,24 МДж/кг.

Будем считать, что мощность электроплитки постоянна. Поэтому:

Q 1 t 1 . . = Q 2 t 2 . .

Количество теплоты, сообщенное воде при нагревании:

Q 1 = с m ( t 2 − t 1 )

Количество теплоты, которое нужно сообщить, чтобы вода полностью испарилась:

с m ( t 2 − t 1 ) t 1 . . = r m t 2 . .

Кусок льда, имеющий температуру 0°С, помещён в калориметр с электронагревателем. Чтобы превратить этот лёд в воду с температурой 12°С, требуется количество теплоты 80 кДж. Какая температура установится внутри калориметра, если лёд получит от нагревателя количество теплоты 60 кДж? Теплоёмкостью калориметра и теплообменом с внешней средой пренебречь.

Алгоритм решения

Решение

Запишем исходные данные:

Составим уравнение теплового баланса для первого случая:

Q 1 = λ m + c m t 1

Внимание! Вместо разности температур используется значение только конечной температуры, так как начальная температура равна 0.

Найдем массу льда из уравнения теплового баланса для первого случая. Учтем что:

Чтобы расплавить кусок льда массой 0,5 кг, нужно затратить следующее количество теплоты:

Лед не расплавится весь, так как ему будет сообщено лишь 60 кДж теплоты. Поэтому в калориметре температура будет равна 0 о С.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Внимательно прочитайте текст задания и выберите верный ответ из списка

На рисунке представлены графики зависимости температуры t двух тел одинаковой массы от сообщённого им количества теплоты Q. Первоначально тела находились в твёрдом агрегатном состоянии.

Используя данные графиков, выберите из предложенного перечня два верных утверждения и укажите их номера. Ответ: а) Температура плавления первого тела в 1,5 раза больше, чем второго. б) Тела имеют одинаковую удельную теплоёмкость в твёрдом агрегатном состоянии. в) Удельная теплоёмкость второго тела в твёрдом агрегатном состоянии в 3 раза больше, чем первого. г) Оба тела имеют одинаковую удельную теплоту плавления. д) Тела имеют одинаковую удельную теплоёмкость в жидком агрегатном состоянии.

Алгоритм решения

  1. Проанализировать каждое из утверждений.
  2. Проверить истинность утверждений с помощью графика.
  3. Выбрать и записать верные утверждения.

Решение

Проверим первое утверждение, согласно которому, температура плавления первого тела в 1,5 раза больше, чем второго.

Если это было бы так, то количество клеток до горизонтального участка графика 1 относилось к количеству клеток до горизонтального участка графика 2 как 3 к 2. Но мы видим, что до 1 графика 4 клетки, до 1 — 2. Следовательно, температура плавления первого тела в 2 раза больше, чем второго.

Первое утверждение неверно.

Проверим второе утверждение, согласно которому тела имеют одинаковую удельную теплоёмкость в твёрдом агрегатном состоянии.

Если бы это было так, то соответствующие участки графиков совпадали бы. Только в таком случае температура тел увеличивалась на одну и ту же температуру при получении одного и того же количества теплоты. Но мы видим, что это не так.

Второе утверждение неверно.

Проверим третье утверждение, согласно которому удельная теплоёмкость второго тела в твёрдом агрегатном состоянии в 3 раза больше, чем первого.

Если это было бы так, то первое тело при сообщении телам одинакового количества теплоты нагревалось бы втрое быстрее второго. И это действительно так, потому что температура второго во время нагревания в твердом состоянии увеличилась только на 1 клетку, в то время как температура первого тела — на 2 клетки.

Третье утверждение верно.

Проверим четвертое утверждение, согласно которому оба тела имеют одинаковую удельную теплоту плавления.

Если это было бы так, то протяженность горизонтальных участков обоих графиков была бы одинаковой. Но это не так. Протяженность этого участка для тела 1 составляет 3 клетки, для тела 2 — 2 клетки.

Четвертое утверждение верно.

Проверим пятое утверждение, согласно которому тела имеют одинаковую удельную теплоёмкость в жидком агрегатном состоянии.

Если бы это было так, то соответствующие участки графиков были параллельными. Только при таком условии при повышении температуры на одно и то же количество градусов тела бы получли одинаковое количество теплоты. И это действительно так.

Пятое утверждение верно.

Вывод: верным утверждения «в» и «д».

pазбирался: Алиса Никитина | обсудить разбор | оценить

В сосуде лежит кусок льда. Температура льда t 1 = 0 «> t 1 = 0 °C. Если сообщить ему количество теплоты Q = 50 «> Q = 50 кДж, то 3/4 льда растает. Какое количество теплоты q надо после этого сообщить содержимому сосуда дополнительно, чтобы весь лёд растаял и образовавшаяся вода нагрелась до температуры t 2 = 20 «> t 2 = 20 °C? Тепловыми потерями на нагрев сосуда пренебречь.

Уравнение теплового баланса

Нагревание и охлаждение

Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле

Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К=1 0 С. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость — табличная величина.

Теплоемкость вещества (тела) С — это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.

При вычислении ΔT договоримся из большей температуры вычитать меньшую. Тогда количество теплоты будет всегда положительной величиной. Это уменьшает вероятность ошибки при сложении количества теплоты, выделяющегося при охлаждении с количеством теплоты выделяющимся, например, при кристаллизации.

Горение

Количество теплоты, которое выделяется при сгорании вещества

Удельная теплота сгорания табличная величина.

Плавление и кристаллизация

Плавление — переход вещества из твердого состояния в жидкое. Обратный переход называется кристаллизацией.

Энергия, которая тратится на разрушение кристаллической решетки вещества, определяется по формуле

Значение удельной теплоты плавления можно найти в таблицах.

Парообразование (испарение или кипение) и конденсация

Парообразование — это переход вещества из жидкого (твердого) состояния в газообразное. Обратный процесс называется конденсацией.

Удельная теплота парообразования табличная величина.

Уравнение теплового баланса

Если мы рассмотрим изолированную (нет обмена энергией с окружающей средой) систему тел (твердых или жидких), в которой теплообмен может совершаться только между телами входящими в эту систему, то в результате этого процесса в системе установится тепловое равновесие. Температуры всех тел станут одинаковыми и равными некоторому значению Q.

В процессе теплообмена тела, начальные температуры которых больше Q («горячие» тела), будут отдавать свою энергию, а тела, у которых начальные температуры меньше Q, — получать энергию.

Из закона сохранения энергии (т.к. система изолированная) следует, что количество теплоты, потерянное телами с более высокой температурой, будет равно количеству теплоты, приобретенному телами с более низкими температурами.

Qотд=Qполуч где Qотд — количество теплоты, отданное «горячими» телами; Qполуч — количество теплоты, полученное «холодными» телами.

Это уравнение носит название уравнения теплового баланса. А положение, что количество теплоты, потерянное «горячими» телами, равно количеству теплоты, приобретенному «холодными телами» называется законом теплообмена.

В приведенном выше подходе при составлении уравнения теплового баланса мы везде из большего значения температуры должны вычитать меньшее, тогда значения количеств теплоты всегда были положительными.

«Виртуальный банк» тепла

Довольно часто встречаются задачи в которых требуется найти конечную температуру системы. Хорошо, если из контекста понятно в каких агрегатных состояниях будут находиться вещества после прекращения теплообмена. Тогда уравнение теплового баланса удается записать с первого раза. Но если непонятно что получится в конце (например, вода, смесь вода+лед, смесь вода+пар и т.п.) то приходится либо по очереди перебирать все варианты, находить конечную температуру и смотреть не противоречит ли она равновесному состоянию данной системы (к примеру, смесь вода+лед не будет существовать при +15 0 С), либо поэтапно сравнивать отдельные количества теплоты и все время отвечать на вопросы… «хватит — не хватит?».

Но есть и другой подход, основанный на замечательном свойстве закона сохранения энергии – связывать начальные и конечные состояния системы независимо от процесса перехода. Если система сложно шла к установлению теплового равновесия, то всегда можно представить весь переход в виде набора из нескольких элементарных процессов, расчет которых не вызывает труда. Пусть даже эти элементарные процессы заведомо не могут протекать в реальной жизни. Окончательный результат (в данном случае, конечная температура) все равно окажется такой же, как и в случае одного сложного процесса.

Поясним на примере. Пусть произошла разгерметизация кастрюли-скороварки с перегретой водой. Масса воды в кастрюле m. Начальная температура T (T>Tкипения). Какая часть воды испарится?

Сколько тепла забирает/отдает перегретая вода не совсем ясно, зато мы умеем рассчитывать, сколько выделит эта вода при остывании и сколько тепла потребуется для испарения некоторой массы при температуре кипения. Тогда предложим схему некоторого виртуального банка тепла. Предположим, что вся перегретая вода остынет до температуры кипения. Тогда она выделит некоторое Q1=mc(T-Tкипения). Временно «отправим» это тепло в банк. Теперь найдем сколько потребуется тепла для испарения некоторой массы mп при температуре кипения? Это легко Q2=mпL. Если система теплоизолирована, то тепло на испарение мы можем взять только из виртуального банка. Q1=Q2. Окончательно . Такой прием особенно выгодно применять в случае теплообмена большого количества тел (и нагревателей), для процессов со сложной и непонятной физикой теплообмена и для поиска конечной температуры системы.

В последнем случае, можно мысленно охладить всю систему до температуры самого холодного тела. Посчитать выделившееся при этом тепло и пустить его на нагревание сразу всей системы.


источники:

http://spadilo.ru/fazovye-perexody-i-uravnenie-teplovogo-balansa/

http://poisk-ru.ru/s15079t8.html

УстройствоПолезная энергия (работа), затраченная энергия (полная работа)КПД
Электронагреватель, электроплитка, электрочайник, кипятильник.
Газовая горелка, паровая турбина, спиртовка, плавильная печь.
Двигатель автомобиля, самолета.
Ружье с пороховым зарядом, пушка