Уравнение теплового баланса тепловой установки

Тепловое равновесие и уравнение теплового баланса

Тела, температура которых отличается, могут обмениваться тепловой энергией. То есть, между телами будет происходить теплообмен. Самостоятельно тепловая энергия переходит от более нагретых тел к менее нагретым.

Что такое теплообмен и при каких условиях он происходит

Тела, имеющие различные температуры, будут обмениваться тепловой энергией. Этот процесс называется теплообменом.

Теплообмен – процесс обмена тепловой энергией между телами, имеющими различные температуры.

Рассмотрим два тела, имеющие различные температуры (рис. 1).

Тело, имеющее более высокую температуру, будет остывать и отдавать тепловую энергию телу, имеющему низкую температуру. А тело с низкой температурой будет получать количество теплоты и нагреваться.

На рисунке, горячее тело имеет розовый оттенок, а холодное изображено голубым цветом.

Когда температуры тел выравниваются, теплообмен прекращается.

Чтобы теплообмен происходил, нужно, чтобы тела имели различные температуры.

Когда температура тел выравняется, теплообмен прекратится.

Тепловое равновесие — это состояние, при котором тела имеют одинаковую температуру.

Уравнение теплового баланса и сохранение тепловой энергии

Когда тело остывает, оно отдает тепловую энергию (теплоту). Утерянное количество теплоты Q имеет знак «минус».

А когда тело нагревается – оно получает тепловую энергию. Приобретенное количество теплоты Q имеет знак «плюс».

Эти факты отражены на рисунке 2.

Закон сохранения тепловой энергии: Количество теплоты, отданное горячим телом равно количеству теплоты, полученному холодным телом.

Примечание: Существует и другая формулировка закона сохранения энергии: Энергия не появляется сама собой и не исчезает бесследно. Она переходит из одного вида в другой.

Уравнение теплового баланса

Тот факт, что тепловая энергия сохраняется, можно записать с помощью математики в виде уравнения. Такую запись называют уравнением теплового баланса.

Запишем уравнение теплового баланса для двух тел, обменивающихся тепловой энергией:

\(\large Q_<\text<остывания горяч>> \left( \text <Дж>\right) \) – это количество теплоты горячее тело теряет.

\(\large Q_<\text<нагревания холод>> \left( \text <Дж>\right) \) – это количество теплоты холодное тело получает.

В левой части уравнения складываем количество теплоты каждого из тел, участвующих в теплообмене.

Записываем ноль в правой части уравнения, когда теплообмен с окружающей средой отсутствует. То есть, теплообмен происходит только между рассматриваемыми телами.

В некоторых учебниках применяют сокращения:

\[\large Q_ <1>+ Q_ <2>= 0 \]

Примечание: Складывая два числа мы получим ноль, когда эти числа будут:

  • равными по модулю и
  • имеют различные знаки (одно число — знак «плюс», а второе – знак «минус»).

Если несколько тел участвуют в процессе теплообмена

Иногда в процессе теплообмена участвуют несколько тел. Тогда, для каждого тела нужно записать формулу количества теплоты Q. А потом все количества теплоты подставить в уравнение для теплового баланса:

\[\large \boxed < Q_<1>+ Q_ <2>+ Q_ <3>+ \ldots + Q_ = 0 > \]

  • Q для каждого нагреваемого тела будет обладать знаком «+»,
  • Q для каждого охлаждаемого тела — знаком «-».

Пример расчетов для теплообмена между холодным и горячим телом

К горячей воде, массой 200 грамм, имеющей температуру +80 градусов Цельсия, добавили холодную воду, в количестве 100 грамм при температуре +15 градусов Цельсия. Какую температуру будет иметь смесь после установления теплового равновесия? Считать, что окружающая среда в теплообмене не участвует.

Примечание: Здесь мы рассматриваем упрощенную задачу, для того, чтобы облегчить понимание закона сохранения энергии. Мы не учитываем в этой задаче, что вода содержится в емкости. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

При решении других задач обязательно учитывайте, что емкость, в которой будет содержаться вещество, имеет массу. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

Решение:

В условии сказано, что окружающая среда в теплообмене не участвует. Поэтому, будем считать рассматриваемую систему замкнутой. А в замкнутых системах выполняются законы сохранения. Например, закон сохранения энергии.

Иными словами, с сосудом и окружающим воздухом теплообмен не происходит и, все тепловая энергия, отданная горячей водой, будет получена холодной водой.

1). Запишем уравнение теплового баланса, в правой части которого можно записать ноль:

2). Теперь запишем формулу для каждого количества теплоты:

Примечания:

  1. \(\large c_<\text<воды>> \) – удельную теплоемкость воды находим в справочнике;
  2. Массу воды переводим в килограммы;
  3. Горячая вода остывает и отдает тепловую энергию. Поэтому, разность \(\large (t_<\text<общ>> — t_<\text<горяч>> ) \) будет иметь знак «минус», потому, что конечная температура горячей воды меньше ее начальной температуры;
  4. Холодная вода получает тепловую энергию и нагревается. Из-за этого, разность \(\large (t_<\text<общ>> — t_<\text<холодн>> ) \) будет иметь знак «плюс», потому, что конечная температура холодной воды больше ее начальной температуры;

3). Подставим выражения для каждого Q в уравнение баланса:

4). Для удобства, заменим символы числами:

\[\large 4200 \cdot 0,2 \cdot (t_<\text<общ>> — 80 ) + 4200 \cdot 0,1 \cdot (t_<\text<общ>> — 15 ) = 0 \]

\[\large 840 \cdot (t_<\text<общ>> — 80 ) + 420 \cdot (t_<\text<общ>> — 15 ) = 0 \]

Раскрыв скобки и решив это уравнение, получим ответ:

Ответ: Температура смеси после прекращения теплообмена будет равна 58,33 градуса Цельсия.

Задача для самостоятельного решения:

В алюминиевом калориметре массой 100 грамм находится керосин массой 250 грамм при температуре +80 градусов Цельсия. В керосин поместили свинцовый шарик, массой 300 грамм. Начальная температура шарика +20 градусов Цельсия. Найдите температуру тел после установления теплового равновесия. Внешняя среда в теплообмене не участвует.

Примечание к решению: В левой части уравнения теплового баланса теперь будут находиться три слагаемых. Потому, что мы учитываем три количества теплоты:

  • \(\large Q_ <1>\) – охлаждение алюминия от температуры +80 градусов до конечной температуры;
  • \(\large Q_ <2>\) – охлаждение керосина от температуры +80 градусов до конечной температуры;
  • \(\large Q_ <3>\) – нагревание свинца от температуры +20 градусов до конечной температуры;

А справа в уравнение теплового баланса запишем ноль. Так как внешняя среда в теплообмене не участвует.

ТЕПЛОВОЙ БАЛАНС ТЕПЛОТЕХНОЛОГИЧЕСКИХ УСТАНОВОК

Теплотехнические расчеты проводятся для определения расхода топ­лива, окислителя и дополнительно вводимых газов (используемых для снижения температуры продуктов горения) с целью получения теплоноси­теля заданной температуры (за счет создания смеси с продуктами горения), количества и химического состава.

В зависимости от типа, режима и технологии, применяемых в тепло — технологических установках, тепловой баланс составляется на 1 час работы или за весь цикл (или отдельные периоды времени внутри цикла). Для теп — лотехнологических установок непрерывного действия тепловой баланс со­ставляется за 1 час работы при установившемся режиме. Для теплотехно — логических установок периодического действия тепловой баланс обычно составляется за весь цикл работы. Тепловые балансы теплотехнологиче — ских установок непрерывного и периодического действия несколько разли­чаются в расходной части.

Тепловой баланс составляется обычно для всей установки, но может составляться только для рабочей камеры. Тепловой баланс теплотехноло — гических установок представляет собой равенство: где ^прих — приходная часть теплового баланса, воспринимаемая теплоту, поступающую в тепловую установку с топливом, воздушной смесью, нагретым материалом и технологическим оборудованием; ^расх — расход­ная часть теплового баланса, включающая теплоту, расходуемую на нагрев материала до требуемой температуры, теплоту с уходящими продуктами сгорания, с химической и механической неполнотой сгорания топлива, теплоту, теряемую поверхностью установки в окружающую среду и др.

В зависимости от конструкции теплотехнологических установок, ее назначения, вида используемого топлива и условий эксплуатации в тепло­вом балансе могут участвовать и другие статьи прихода и расхода теплоты. Из уравнения теплового баланса определяется расход топлива или подача пара (теплоносителя), необходимого для теплотехнологического процесса. Тепловой баланс позволяет судить об экономичности процесса нагрева ма­териала или вещества, эффективности использования топлива, а также по­казывает возможности и направления совершенствования работы тепло — технологических установок.

Приходная часть баланса теплоты

1. Химическая теплота сгорания топлива

Где В — расход топлива, м /ч, кг/ч; Q — низшая теплота сгорания топлива, кДж/м3, кДж/кг.

Расход топлива В и требуется определить из уравнения теплового ба­ланса. В расчетах баланса теплоты используется низшая теплота сгорания топлива, так как продукты горения выбрасываются в атмосферу и скрытая теплота парообразования водяных паров не используется.

2. Физическая теплота подогретого воздуха в топках машинострои­тельной промышленности, которая поступает в тепловую установку обыч­но с нагретым воздухом Q,^. — и редко с нагретым газом Q,^:

Qi,^ = в св tB V ат, кДж/ч;

Qi, T = В сг 4 , кДж/ч, где tв, tr — температура воздуха и газа соответственно, °С; св, сг — удельная объемная изобарная теплоемкость воздуха при 4 и газа при tr соответствен­но, кДж/(м3 • К); V — теоретическое количество воздуха, необходимое для сжигания единицы топлива, м3/м3 (м3/кг); ат — коэффициент избытка возду­ха в топке.

При расчете следует учитывать, что в теплотехнологических установ­ках через неплотности в обмуровке подсасывается холодный воздух, по­этому под температурой воздуха 4 понимают средневзвешенную (по объе­му) температуру подогретого и подсасываемого воздуха.

3. Теплота экзотермических реакций Q^.

Тепловой эффект экзотермической реакции металлов, строительных и других материалов приведен в [29, 36, 37]. При нагреве стальных изделий, форм их поверхность окисляется и для стали можно принять:

Qэкз = 5670 Мо, кДж/ч;

Где 5670 — удельная теплота окисления, кДж/кг; М0 — масса окалины, обра­зовавшейся на металле, кг/ч; Мм — производительность печи, кг/ч; 5 — угар при нагреве, % (для стали 5 = 0,2.0,4).

4. Физическая теплота, вносимая в установку с транспортирующими устройствами, тарой Q-I и самим материалом Q^^:

Q-r = Мт ст tт, кДжІч;

Qф. м = Мм см tм, кДжіч,

Где Мт, Мм — масса транспортирующих устройств, тары и материала, вно­симых в печь, кгіч; ст, см — удельная теплоемкость транспортирующих устройств, тары и материала при 4 и 4 соответственно, кДжі(кг • К); 4, tм — температура транспортирующих устройств, тары и материала, °С.

5. Теплота, вводимая в топку теплотехнологической установки с па­ром при паровом распыливании мазута или под колосниковую решетку для улучшения процесса горения при слоевом сжигании угля:

Qi^^, = Gф (/’пар — 2510), кДжікг,

Где G,|, — расход пара на 1 кг топлива (при паровом распыливании мазута G(i, = 0,3.0,35 кгікг; при подаче пара под колосниковую решетку Gф = 0,2.0,4 кгікг); /пар — энтальпия пара, кДжікг, 2510 — энтальпия пара, сбра­сываемого с продуктами сгорания в атмосферу.

1. Теплота для нагрева материала до конечной температуры:

Qм = Gм см (4 — 4), кДжіч,

Где G„ — производительность установки, кгіч; см — теплоемкость материала при 4 , кДжі(кг • К); 4, 4 — начальная и конечная температуры материала, °С.

2. Потери теплоты с уходящими продуктами горения: а) в котельных агрегатах:

Qух = В Уух сух tух, кДжіч,

Где В — расход топлива, м3іч, кгіч; Уух — объем топочных газов, м3ікг, м3ім3, образовавшихся от сжигания 1 м3, 1 кг топлива при коэффициенте избытка воздуха в уходящих топочных газах а^; сух — теплоемкость уходящих га­зов, кДжі(кг • К) при температуре t^..

В теплотехнологических установках, работающих под разрежением, в связи с присосом воздуха ЕДа по газовому тракту, коэффициент избытка воздуха в уходящих газах аух увеличивается и на выходе равен:

Б) в установках для нагрева и обжига кусковых, порошкообразных материалов и суспензий (гипса, извести, глины, доломита, магнезита, це­мента и т. п.) потери теплоты с уходящими газами и с присосом воздуха через неплотности печи складываются из теплосодержания газов, образо­вавшихся при сгорании топлива и выделившихся при разложении сырье­вых материалов:

Qyx = (В Уух сух + Gм УГ1 сгі) tyx, кДжіч,

Где УГі — объем газов, образовавшихся при разложении 1 кг обожженного материала, м3ікг; сГ1 — теплоемкость газов, выделившихся из материала, кДжі(м3 • К).

Если из материала происходит выделение разнородных газов (СО2, N2 и др.), отличных по своей теплоемкости, то в скобках будет соответственно большее число слагаемых. Обжиг керамических изделий обычно происхо­дит без значительного выделения газов и поэтому в потерю теплоты с ухо­дящими газами газовыделение из материала можно не включать.

В) в нагревательных печах, у которых происходит выбивание продук­тов горения из рабочего пространства печи, потери теплоты с уходящими продуктами горения определяются:

Qух = (В Уух — ^выб) /ух сух, кДж/ч,

Где Увыб — объем продуктов горения, выбивающихся из рабочего простран­ства, м3/ч (см. расходную статью 5).

3. Потери теплоты через каждый участок кладки определяются из вы­ражения:

Q*. = Сткл [(^кл /100)4 — (Тв /100)4] F + ак (/кл — /в) F, кДж/ч,

Где сткл — коэффициент излучения наружной поверхности кладки, кДж/(м2 • ч • К4), для кирпичной кладки сткл = 20,1, для металлической об­шивки сткл = 18; /кл — температура наружной поверхности кладки расчетного участка, °С; Ткл = /кл + 273, К; Тв, /в — температура окружающего воздуха, К, °С, Тв = /в + 273 К; F — площадь поверхности расчетного участка, м2; ак — коэффициент теплоотдачи конвекцией от наружной поверхности кладки к окружающему воздуху, кДж/(м2 • ч • К).

Для определения коэффициента теплоотдачи конвекцией от наружной поверхности кладки к окружающему воздуху ак можно использовать вы­ражение:

Ак = 4,18 A, А 2 [(/кл /в)//]0’25,

Где Aj — коэффициент, зависящий от положения стен, равный 1,0 для вер­тикальной поверхности, 1,3 — для горизонтальной поверхности, обращен­ной вверх, 0,7 — для горизонтальной поверхности, обращенной вниз; А2 — коэффициент, зависящий от температуры кладки и окружающего воздуха; / — определяющий размер, м, принимается равным высоте участка, располо­женного в вертикальной плоскости, или меньшей стороне участка, распо­ложенного в горизонтальной плоскости.

Коэффициент А 2 зависит от средней арифметической температуры на­ружной кладки и окружающего воздуха /ср = 0,5(/кл + /в), °С, и численно может быть принят равным А2 = 1,14 при /ср = 50; А2 = 1,09 при /ср = 100; А2 = 1,05 при /ср = 200; А2 = 0,95 при /ср = 300 °С.

4. Потери теплоты излучением через окна установки:

Q^ = ф со F Т0 [(Тп /100)4 — (Тв /100)4], кДж/ч,

Где ф — коэффициент диафрагмирования открытого отверстия, зависящего от его формы и отношения ширины отверстия а к толщине стенки 5; со = 20,5 кДж/(м2 • К4) — коэффициент лучеиспускания абсолютно черного тела; F — площадь открытого отверстия, м ; т0 — время, в течение которого отвер­стие открыто, ч.

Значения коэффициента диафрагмирования открытого отверстия ф можно принять из нижеприведенной таблицы:

Тепловой баланс котельного агрегата

Тепловой баланс котельного агрегата

Тепловой баланс котельного агрегата устанавливает равенство между поступающим в агрегат количеством теплоты и его расходом. На основании теплового баланса котельного агрегата определяют расход топлива и вычисляют коэффициент полезного действия, который является важнейшей характеристикой энергетической эффективности работы котла.

В котельном агрегате химически связанная энергия топлива в процессе горения преобразуется в физическую теплоту горючих продуктов сгорания. Эта теплота расходуется на выработку и перегрев пара или нагревание воды. Вследствие неизбежных потерь при передаче теплоты и преобразовании энергии вырабатываемый продукт (пар, вода и т.д.) воспринимает только часть теплоты. Другую часть составляют потери, которые зависят от эффективности организации процессов преобразования энергии (сжигания топлива) и передачи теплоты вырабатываемому продукту.

Тепловой баланс котельного агрегата заключается в установлении равенства между поступившим в агрегат количеством теплоты и суммой использованной теплоты и тепловых потерь. Тепловой баланс котельного агрегата составляется на 1 кг твердого или жидкого топлива или для 1 м 3 газа. Уравнение, при котором тепловой баланс котельного агрегата для установившегося теплового состояния агрегата записывают в следующем виде:

Где Qр/ р — теплота, которой располагают; Q1 — использованная теплота; ∑Qn — общие потери; Q2 — потери теплоты с уходящими газами; Q3 — потери теплоты от химического недожога; Q4 — потери теплоты от механической неполноты сгорания; Q5 — потери теплоты в окружающую среду; Q6 — потери теплоты с физической теплотой шлаков.

Если каждое слагаемое правой части уравнения (19.3) разделить Qp/ p и умножить на 100%, получим второй вид уравнения, при котором тепловой баланс котельного агрегата:

В уравнении (19.4) величина q1 представляет собой коэффициент полезного действия установки «брутто». Он не учитывает затраты энергии на обслуживание котельной установки: привод дымососов, вентиляторов, питательных насосов и прочие расходы. Коэффициент полезного действия «нетто» меньше КПД «брутто», так как он учитывает затраты энергии на собственные нужды установки.

Левая приходная часть уравнения теплового баланса (19.3) является суммой следующих величин:

где QB.BH — теплота, вносимая в котлоагрегат с воздухом на 1 кг топлива. Эта теплота учитывается тогда, когда воздух нагревается вне котельного агрегата (например, в паровых или электрических калориферах, устанавливаемых до воздухоподогревателя); если воздух нагревается только в воздухоподогревателе, то эта теплота не учитывается, так как она возвращается в топку агрегата; Qпap — теплота, вносимая в топку с дутьевым (форсуночным) паром на 1 кг топлива; Qфиз.т — физическая теплота 1 кг или 1 м 3 топлива.

Теплоту, вносимую с воздухом, рассчитывают по равенству

где β — отношение количества воздуха на входе в воздухоподогреватель к теоретически необходимому; ср — средняя объемная изобарная теплоемкость воздуха; при температуре воздуха до 600 К можно считать ср = 1,33 кДж/(м 3 К); Тг.вз — температура нагретого воздуха, К; Тх.вз — температура холодного воздуха, принимаемая обычно равной 300 К.

Теплоту, вносимую с паром для распыления мазута (форсуночный пар), находят по формуле:

где Wф — расход форсуночного пара, равный 0,3 — 0,4 кг/кг; iф — энтальпия форсуночного пара, кДж/кг; r — теплота парообразования, кДж/кг.

Физическая теплота 1 кг топлива:

где ст — теплоемкость топлива, кДж/(кгК); Тт — температура топлива, К.

Значение величины Qфиз. т обычно незначительно и в расчетах учитывается редко. Исключением являются мазут и низкокалорийный горючий газ, для которых значение Qфиз.т существенно и должно обязательно учитываться.

Если предварительный подогрев воздуха и топлива отсутствует и пар для распыления топлива не используется, то Q p /р = Q р /н. Слагаемые потерь тепла в уравнении теплового баланса котельного агрегата подсчитывают на основании равенств, приводимых ниже.

1. Потерю теплоты с уходящими газами Q2(q2) определяют как разность между энтальпией газов на выходе из котельного агрегата и воздуха, поступающего в котельный агрегат (двоздухоподогревателя), т.е.

где Vr — объем продуктов сгорания 1 кг топлива, определяемый по формуле (18.46), м 3 /кг; cр.r, ср.в — средние объемные изобарные теплоемкости продуктов сгорания топлива и воздуха, определяемые как теплоемкости газовой смеси (§ 1.3) с помощью таблиц (см. прил. 1); Тух, Тх.вз — температуры уходящих газов и холодного воздуха; а — коэффициент, учитывающий потери от механического недожога топлива.

Котельные агрегаты и промышленные печи работают, как правило, под некоторым разрежением, которое создается дымососами и дымовой трубой. Вследствие этого через не плотности в ограждениях, а также через смотровые лючки и т.д. подсасывается из атмосферы некоторое количество воздуха, объем которого необходимо учитывать при расчете Iух.

Энтальпию всего поступающего в агрегат воздуха (с учетом присосов) определяют по коэффициенту избытка воздуха на выходе из установки αух = αт + ∆α.

Общий подсос воздуха в котельных установках не должен превышать ∆α = 0,2 ÷ 0,3.

Из всех потерь теплоты величина Q2 — самая значительная. Величина Q2 возрастает с увеличением коэффициента избытка воздуха, температуры уходящих газов, влажности твердого топлива и забалластированности негорючими газами газообразного топлива. Снижение присосов воздуха и улучшение качества горения приводят к некоторому уменьшению потери теплоты Q2. Основным определяющим фактором, влияющим на потерю теплоты уходящими газами, является их температура. Для снижения Тух увеличивают площадь теплоиспользующих поверхностей нагрева — воздухоподогревателей и экономайзеров.

Величина Тух влияет не только на КПД агрегата, но и на капитальные затраты, необходимые для установки воздухоподогревателей или экономайзеров. С уменьшением Тух возрастает КПД и снижаются расход топлива и затраты на него. Однако при этом возрастают площади теплоиспользующих поверхностей (при малом температурном напоре площадь поверхности теплообмена необходимо увеличивать; см. § 16.1), в результате чего повышаются стоимость установки и эксплуатационные расходы. Поэтому для вновь проектируемых котельных агрегатов или других теплопотребляющих установок значение Тух определяют из технико — экономического расчета, в котором учитывается влияние Tух не только на КПД, но и на величину капитальных затрат и эксплуатационных расходов.

Другой важный фактор, влияющий на выбор Тух, — содержание серы в топливе. При низкой температуре (меньше, чем температура точки росы дымовых газов) возможна конденсация водяных паров на трубах поверхностей нагрева. При взаимодействии с сернистым и серным ангидридами, которые присутствуют в продуктах сгорания, образуются сернистая и серная кислоты. В результате этого поверхности нагрева подвергаются интенсивной коррозии.

Современные котельные агрегаты и печи для обжига строительных материалов имеют Тух = 390 — 470 К. При сжигании газа и твердых топлив с небольшой влажностью Тух — 390 — 400 К, влажных углей

Тух = 410 — 420 К, мазута Тух = 440 — 460 К.

Влажность топлива и негорючие газообразные примеси являются газообразующим балластом, который увеличивает количество получающихся при горении топлива продуктов сгорания. При этом повышаются потери Q2.

При использовании формулы (19.6) следует иметь в виду, что объемы продуктов сгорания рассчитывают без учета механического недожога топлива. Фактическое количество продуктов сгорания с учетом механической неполноты горения будет меньше. Это обстоятельство учитывают, вводя в формулу (19.6) поправочный коэффициент a = 1 — р4/100.

2. Потеря теплоты от химического недожога Q3(q3). Газы на выходе из топки могут содержать продукты неполного горения топлива СО, Н2, СН4, теплота сгорания которых не использована в топочном объеме и далее по тракту котлоагрегата. Суммарная теплота сгорания этих газов и обусловливает химический недожог. Причинами появления химического недожога могут быть:

  • недостаток окислителя (α 3 .

Недостаток воздуха приводит в тому, что часть горючих элементов газообразных продуктов неполного горения топлива может вообще не сгорать из-за отсутствия окислителя.

Плохое перемешивание топлива с воздухом является причиной или местного недостатка кислорода в зоне горения, или, наоборот, большого его избытка. Большой избыток воздуха вызывает снижение температуры горения, что уменьшает скорости реакций горения и делает процесс сжигания неустойчивым.

Малое удельное тепловыделение в топке (qv = BQ p/ н/Vт, где В — расход топлива; VT — объем топки) является причиной сильного рас сеяния теплоты в топочном объеме и ведет к снижению температуры. Завышенные значения qv также вызывают появление химического недожога. Объясняется это тем, что для завершения реакции горения требуется определенное время, а при значительно завышенном значении qv время нахождения топливовоздушной смеси в топочном объеме (т.е. в зоне наиболее высоких температур) оказывается недостаточным и ведет к появлению в газообразных продуктах сгорания горючих составляющих. В топках современных котельных агрегатов допустимое значение qv достигает 170 — 350 кВт/м 3 (см. § 19.2).

Для вновь проектируемых котельных агрегатов значения qv выбирают по нормативным данным в зависимости от вида сжигаемого топлива, способа сжигания и конструкции топочного устройства. При балансовых испытаниях эксплуатируемых котельных агрегатов величину Q3 рассчитывают по данным газового анализа.

При сжигании твердого или жидкого топлива величину Q3, кДж/кг, можно определить по формуле(19.7)

3.Потеря теплоты от механической неполноты сгорания топлива Q4(g4). При горении твердого топлива остатки (зола, шлак) могут содержать некоторое количество несгоревших горючих веществ (в основном углерода). В результате химически связанная энергия топлива частично теряется.

Потеря теплоты от механической неполноты сгорания включает ее потери вследствие:

  • провала мелких частиц топлива через зазоры в колосниковой решетке Qпр (qпр);
  • удаление некоторой части недогоревшего топлива со шлаком и золой Qшл (qшл);
  • уноса мелких частиц топлива дымовыми газами Qун (qун)

Потеря теплоты q принимает большие значения при факельном сжигании пылевидного топлива, а также при сжигании неспекающихся углей в слое на неподвижных или подвижных колосниковых решетках. Значение qун для слоевых топок зависит от видимого удельного энерговыделения (теплонапряжения) зеркала горения qR, кВт/м 2 , т.е. от количества выделяющейся тепловой энергии, отнесенного к 1 м 2 горящего слоя топлива.

Допустимое значение qR BQ р /н/R (В — расход топлива; R — площадь зеркала горения) зависит от вида сжигаемого твердого топлива, конструкции топки, коэффициента избытка воздуха и т.д. В слоевых топках современных котельных агрегатов величина qR имеет значения в пределах 800 — 1100 кВт/м2. При расчете котельных агрегатов величины qR, q4 = qnp + qшл + qун принимают по нормативным материалам. При балансовых испытаниях потерю теплоты от механического недожога рассчитывают по результатам лабораторного технического анализа сухих твердых остатков на содержание в них углерода. Обычно для топок с ручной загрузкой топлива q4 = 5 ÷ 10%, а для механических и полумеханических топок q4 = 1 ÷ 10%. При сжигании пылевидного топлива в факеле в котельных агрегатах средней и большой мощности q4 = 0,5 ÷ 5%.

4. Потеря теплоты в окружающую среду Q5 (q5) зависит от большого числа факторов и главным образом от размеров и конструкции котла и топки, теплопроводности материала и талщины стенок обмуровки, тепловой производительности котлоагрегата, температуры наружного слоя обмуровки и окружающего воздуха и т. д.

Потери теплоты в окружающую среду при номинальной производительности определяют по нормативным данным в зависимости от мощности котлоагрегата и наличия дополнительных поверхностей нагрева (экономайзера). Для паровых котлов производительностью до 2,78 кг/с пара q5 — 2 — 4%, до 16,7 кг/с — q5 — 1 — 2%, более 16,7 кг/с — q5 = 1 — 0,5%.

Потери теплоты в окружающую среду распределяются по различным газоходам котлоагрегата (топка, пароперегреватель, экономайзер и т.д.) пропорционально теплоте, отдаваемой газами в этих газоходах. Эти потери учитывают, вводя коэффициент сохранения теплоты φ = 1 q5/(q5 + ȵк.а) где ȵк.а — КПД котельного агрегата.

5. Потеря теплоты с физической теплотой удаляемых из топок золы и шлаков Q6(q6) незначительна, и ее следует учитывать только при слоевом и камерном сжигание многозольных видов топлива (типа бурых углей, сланцев), для которых она составляет 1 — 1,5%.

Потери теплоты с горячей золой и шлаком q6, %, рассчитывают по формуле

где ашл — доля золы топлива в шлаке; Сшл — теплоемкость шлака; Тшл — температура шлака.

При факельном сжигании пылевидного топлива ашл = 1 — аунун — доля золы топлива, уносимой из топки с газами).

Для слоевых топок асл шл = ашл + апрпр — доля золы топлива в «провале»). При сухом шлакоудалении температура шлака принимается Тш = 870 К.

При жидком шлакоудалении, которое наблюдается иногда при факельном сжигании пылевидного топлива Тшл = Тзол + 100 К (Тзол — температура золы в жидкоплавком состоянии). При слоевом сжигании горючих сланцев к зольности Aр вводится поправка на содержание углекислоты карбонатов, равная 0,3 (СО2), т.е. зольность принимается равной АР + 0,3 (СО2) р /к. Если удаляемый шлак находится в жидком состоянии, то значение величины q6 достигает 3%.

В печах и сушилках, применяемых в промышленности строительных материалов, помимо рассмотренных потерь теплоты приходится учитывать также потери на прогрев транспортных устройств (например, вагонеток), на которых материал подвергается тепловой обработке. Эти потери могут доходить до 4% и более.

Таким образом, КПД «брутто» может быть определен как

Теплоту, воспринятую вырабатываемым продуктом (пар, вода), обозначим Qк.a, кВт, тогда имеем:

для паровых котлов

для водогрейных котлоагрегатов

Где D — производительность котла, кг/с; iп.п — энтальпия перегретого пара (если котел вырабатывает насыщенный пар, то вместо iп.в следует поставить (iпн) кДж/кг; iп.в — энтальпия питательной воды, кДж/кг; р — количество воды, удаляемой из котлоагрегата с целью сохранения допустимого содержания солей в котловой воде (так называемая непрерывная продувка котла), %; i — энтальпия котловой воды, кДж/кг; Мв — расход воды через котлоагрегат,кг/с; ср.в — теплоемкость воды, кДж/(кгК); Tвых — температура горячей воды на выходе из котла; Твх — температура воды на входе в котел.

Расход топлива В, кг/с или м 3 /с, определяют по формуле

Объем продуктов сгорания (см. § 18.5) определяют без учета потери от механического недожога. Поэтому дальнейший расчет котельного агрегата (теплообмен в топке, определение площади поверхностей нагрева в газоходах, воздухоподогревателя и экономайзера) осуществляется по расчетному количеству топлива Вр:

(19.13)

При сжигании газа и мазута Вр = В.


источники:

http://msd.com.ua/osnovy-energosberezheniya-i-energoaudita/teplovoj-balans-teplotexnologicheskix-ustanovok/

http://www.kotel-kv.com/heat-balance-boiler-unit.html