Уравнение теплового баланса тепловые двигатели

Тепловой баланс двигателя

Теплота, выделяемая при горении топлива, не может быть полностью трансформирована в полезную работу, так как даже в соответствии со вторым законом термодинамики часть ее неизбежно отдается холодному источнику. Расходование теплоты сгорания топлива, внесенного в двигатель за определенней период времени, на полезную работу и различные потери характеризуется тепловым балансом.

С помощью теплового баланса можно определить степень совершенства конструкции и регулировок двигателя и наметить пути улучшения экономичности его работы.

Уравнение теплового баланса:

где Q – теплота сгорания топлива, поступившего в двигатель;

Qе – теплота, эквивалентная эффективной работе двигателя;

Qохл теплота, переданная в охлаждающую среду через стенки цилиндра;

QГ теплота, уносимая с отработавшими газами;

Qнс потери теплоты вследствие неполноты сгорания топлива;

Qост – остальные, не учтенные ранее тепловые потери.

В относительных величинах (%) уравнение теплового баланса можно записать в виде:

Теплоту сгорания Q (кДж/ч) определяют по часовому расходу топлива GТ (кг/ч) с учетом его низшей теплотворной способности Hu (кДж/кг):

Количество теплоты Qе (кДж/ч), эквивалентное эффективной мощности двигателя Ne (кВт):

Зная количество охладителя Gохл (кг/ч), проходящего через систему охлаждения в единицу времени, и температуры его на входе T1 и выходе из системы T2, можно определить Qохл (кДж/ч):

где сохл теплоемкость охладителя, кДж/(кг К).

При известном количестве воздуха (горючей смеси) Gсм (кг/ч), поступающего в двигатель в единицу времени, его температуре Tсм (К) и температуре отработавших газов TГ (К) количество теплоты (кДж/ч), уносимой с этими газами, находят по формуле:

где c ′′ p теплоемкость отработавших газов при постоянном давлении, кДж/(кг град);

cp теплоемкость горючей смеси при постоянном давлении, кДж/(кг град).

Потери теплоты вследствие химической неполноты сгорания топлива (кДж/ч) определяются только для карбюраторных двигателей при значении коэффициента избытка воздуха α

9. Виды испытаний автомобильных двигателей. Оборудование, применяемое при испытаниях двигателей.

Испытания двигателей проводят для оценки показателей их работы и сравнения, для определения качества проведенного ремонта, а также для проверки показателей двигателя после проведения необходимых регулировок. Анализ результатов испытаний двигателей позволяет оценить эффективность их конструктивных особенностей, качество изготовления или их техническое состояние.

Основные виды испытаний двигателей можно классифицировать по признакам, определяющим программу и методы их проведения.

По целевому назначению различают испытания поисковые, доводочные, приемочные (государственные, межведомственные), инспекционные (длительные контрольные и краткие, периодические), приемно-сдаточные, ресурсные (на надежность), сертификационные и исследовательские.

По применяемым средствам, условиям и месту проведения испытания подразделяют на стендовые, полигонные, дорожные, эксплуатационные, испытания в особых условиях (высокогорных, тропических и т.д.).

Основные характеристики автомобильных поршневых и роторно-поршневых двигателей внутреннего сгорания определяют методом стендовых испытаний.

Стенд для испытания двигателей содержит массивный бетонный фундамент с заделанными в него чугунными плитами, вертикальные стойки для закрепления двигателя на фундаментной плите, тормозное устройство для имитации нагрузки двигателя, промежуточный редуктор для согласования характеристик двигателя и тормоза, необходимые приборы для проведения измерений и органы управления двигателем. Стенд оборудуется системами питания двигателя топливом, охлаждения двигателя и отвода отработавших газов.

При испытаниях автотракторных двигателей наибольшее применение находят электрические и гидравлические тормоза.

Выбор тормоза производится по максимальным мощности и числу оборотов. Соответствие тормоза двигателю по мощностным и скоростным данным обычно устанавливают путем наложения внешней скоростной характеристики двигателя на внешнюю характеристику тормоза.

Испытательный стенд должен иметь оборудование для измерения следующих показателей: крутящего момента двигателя с точностью; частоты вращения коленчатого вала; расхода топлива, температуры охлаждающей жидкости; температуры масла; барометрического давления; давления масла; угла опережения зажигания или начала подачи топлива; давления наддува.

Частоту вращения можно измерять приборами двух типов: суммарными счетчиками, фиксирующими число оборотов за определенный отрезок времени, и тахометрами, которые дают текущее значение частоты вращения. В зависимости от принципа действия тахометры могут быть центробежными и электрическими.

Расход топлива определяют с помощью устройств, показывающих объемный или массовый расход. Продолжительность опытов должна быть не менее 30 с.

Расход воздуха замеряют с помощью специального расходомера (воздухомера) или устройств, имеющих на впускном тракте измерительную насадку.

Для определения температуры в зависимости от пределов ее изменения и расположения точки, температуру которой необходимо замерить, применяют следующие приборы; жидкостные термометры, термометры сопротивления, термопары и термометры манометрического типа.

Угол опережения зажигания или начала подачи топлива на стенде определяется с помощью стробоскопического устройства.

Условия стендовых испытаний автомобильных двигателей определяются ГОСТ 14846-81.

Как рассчитывается тепловой баланс ДВС

В теории двигателестроения много внимания уделяется газообмену и распределению тепла в процессе работы ДВС. Немаловажный аспект в понимании работы – тепловой баланс двигателя.

Базовые понятия

Тепловым балансом называют соотношение количества теплоты, выполнившее полезную работу, к теплоте, растраченной впустую. Под напрасной растратой подразумеваются потери теплоты на нагрев элементов окружающей среды. Топливный баланс может быть составлен в процентном соотношении либо в единицах энергии (калориях, джоулях). В зависимости от преследуемых целее, уравнение теплового баланса позволяет подсчитать соотношение общего количества теплоты на 1 час работы, фиксированный цикл, на 1 кг израсходованного вещества либо на единицу получаемой продукции.


В области техники понятие применяется для анализа и изучения различного рода тепловых процессов, происходящих в двигателях внутреннего сгорания, газотурбинных установках, печах и т.д. Полученные из уравнения данные позволяют рассчитать коэффициент полезного действия как всего агрегата в целом, так и отдельных элементов установки. Иными словами, расчет теплового баланса позволяет нам узнать, насколько эффективно внутри двигателя происходит сгорание топливовоздушной смеси (ТПВС).

Уравнение

Тепловой баланс может быть выражен в форме уравнения, одна часть которого будет показывать приход тепла в систему, а вторая – потери и расход. Для лучшего наглядного представления значения легко трансформируются в диаграммы и таблицы.

Левая часть уравнения теплового баланса (Q) — общее количество теплоты, подведенного в двигатель с горючим, вторая часть показывает распределение теплотворной способности топлива, где

  • Qeколичество полезного тепла. Показывает количество теплоты, израсходовавшейся на преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Это и будет эффективно расходованная энергия.
  • Qохлтепло, растраченное на обогрев антифриза. В двигателях с воздушным охлаждением этот параметр будет обозначать потери на нагрев воздуха.
  • Qгазколичество теплоты, вышедшее из двигателя вместе с отработавшими газами.
  • Qхимпотери тепла вследствие неполноты сгорания топлива.
  • Qостостаточные потери, не учтенные в остальных пунктах.
  • Qмпередавая смазочным материалам теплота.

Если говорить о процентном выражении, то Q – 100% полученного тепла. Процентное соотношение общего количества тепла к каждому виду потерь можно получить по формуле:

Эффективность двигателя внутреннего сгорания

Большая часть теплоты при сгорании топлива уходит на нагрев поршня, стенок цилиндра и ГБЦ, но наибольшие потери происходят при выходе выхлопных газов. Именно поэтому использование выхлопа для раскручивания турбины повышает КПД двигателя внутреннего сгорания. Большая часть полезной работы затрачивается на преодоления трения, сжатия пружин и насосные потери, связанные с перекачиванием технических жидкостей (моторного масла, жидкости ГУР). Под потерями на трение подразумевается не только сопротивление движению поршней, вращению коленчатого и распределительного валов, но и, к примеру, затрачиваемое усилие на вращение шкива генератора.

КПД двигателя рассчитывается как соотношение полезной энергии к общему количеству энергии, высвободившейся в процессе горения ТПВС.

КПД конкретной модели двигателя зависит от многих параметров, но в целом можно сказать, что бензиновые агрегаты имеют эффективность в районе 20-25%, тогда как показатель атмосферных ДВС цикла Дизеля достигает 40%. Установка турбонагнетателя на дизельный двигатель позволяет получить внушительные 50-53% эффективности.

Борьба с потерями

Можно выделить 3 основные способа потери полезной энергии:

  • топливная эффективность (порядка 25% всех потерь). Как бы ни старались конструкторы, но сжечь полностью порцию топлива и получить близкую к максимально возможной отдачу на современной стадии двигателестроения невозможно;
  • тепловые потери в процентном эквиваленте достигают 35% от общей эффективности;
  • механические потери, связанные с трением, насосными потерями (около 20%).

Существует 2 основных способа получения большей отдачи от сгорания ТПВС: увеличить топливную эффективность и уменьшить потери. Чтобы получить большую отдачу от сгорания бензина, ТПВС нужно как можно сильнее сжать. Но в случае с бензиновыми двигателями мы натыкаемся на большую проблему – детонацию. Дизельным моторам детонация не страшна, но увеличение энергии приводит к чрезмерным нагрузкам на коленчатый вал, вкладыши коленвала и т.д. Поддерживать чрезвычайно высокую температуру в камере сгорания двигателя также нет возможности, так как детали ЦПГ, головки блока цилиндров имеют определенный коэффициент расширения. Изготовление деталей из сверхпрочных материалов удорожит себестоимость производства, сделав тем самым изготовление экономически невыгодным. Уменьшение потерь – действенный способ увеличения КПД двигателя. Именно желание уменьшить потери привело современное двигателестроение к облегчению деталей ЦПГ, уменьшению размера поршневых колец, ранней блокировке ГДТ в коробках автомат и тому подобным мерам.

Уравнение теплового баланса тепловые двигатели

Тепловые машины в термодинамике — это периодически действующие тепловые двигатели и холодильные машины (термокомпрессоры). Разновидностью холодильных машин являются тепловые насосы.

Устройства, совершающие механическую работу за счёт внутренней энергии топлива, называются тепловыми машинами (тепловыми двигателями). Для функционирования тепловой машины необходимы следующие составляющие: 1) источник тепла с более высоким температурным уровнем t1, 2) источник тепла с более низким температурным уровнем t2, 3) рабочее тело. Иначе сказать: любые тепловые машины (тепловые двигатели) состоят из нагревателя, холодильника и рабочего тела.

В качестве рабочего тела используются газ или пар, поскольку они хорошо сжимаются, и в зависимости от типа двигателя может быть топливо (бензин, керосин), водяной пар и пр. Нагреватель передаёт рабочему телу некоторое количество теплоты (Q1), и его внутренняя энергия увеличивается, за счёт этой внутренней энергии совершается механическая работа (А), затем рабочее тело отдаёт некоторое количество теплоты холодильнику (Q2) и охлаждается при этом до начальной температуры. Описанная схема представляет цикл работы двигателя и является общей, в реальных двигателях роль нагревателя и холодильника могут выполнять различные устройства. Холодильником может служить окружающая среда.

Поскольку в двигателе часть энергии рабочего тела передается холодильнику, то понятно, что не вся полученная им от нагревателя энергия идет на совершение работы. Соответственно, коэффициент полезного действия двигателя (КПД) равен отношению совершенной работы (А) к количеству теплоты, полученному им от нагревателя (Q1):

Двигатель внутреннего сгорания (ДВС)

Существует два типа двигателей внутреннего сгорания (ДВС): карбюраторный и дизельный. В карбюраторном двигателе рабочая смесь (смесь топлива с воздухом) готовится вне двигателя в специальном устройстве и из него поступает в двигатель. В дизельном двигателе горючая смесь готовится в самом двигателе.

ДВС состоит из цилиндра, в котором перемещается поршень; в цилиндре имеются два клапана, через один из которых горючая смесь впускается в цилиндр, а через другой отработавшие газы выпускаются из цилиндра. Поршень с помощью кривошипно-шатунного механизма соединяется с коленчатым валом, который приходит во вращение при поступательном движении поршня. Цилиндр закрыт крышкой.

Цикл работы ДВС включает четыре такта: впуск, сжатие, рабочий ход, выпуск. Во время впуска поршень движется вниз, давление в цилиндре уменьшается, и в него через клапан поступает горючая смесь (в карбюраторном двигателе) или воздух (в дизельном двигателе). Клапан в это время закрыт. В конце впуска горючей смеси закрывается клапан.

Во время второго такта поршень движется вверх, клапаны закрыты, и рабочая смесь или воздух сжимаются. При этом температура газа повышается: горючая смесь в карбюраторном двигателе нагревается до 300— 350 °С, а воздух в дизельном двигателе — до 500—600 °С. В конце такта сжатия в карбюраторном двигателе проскакивает искра, и горючая смесь воспламеняется. В дизельном двигателе в цилиндр впрыскивается топливо, и образовавшаяся смесь самовоспламеняется.

При сгорании горючей смеси газ расширяется и толкает поршень и соединенный с ним коленчатый вал, совершая механическую работу. Это приводит к тому, что газ охлаждается.

Когда поршень придёт в нижнюю точку, давление в нём уменьшится. При движении поршня вверх открывается клапан, и происходит выпуск отработавшего газа. В конце этого такта клапан закрывается.

Паровая турбина

Паровая турбина представляет собой насаженный на вал диск, на котором укреплены лопасти. На лопасти поступает пар. Пар, нагретый до 600 °С, направляется в сопло и в нём расширяется. При расширении пара происходит превращение его внутренней энергии в кинетическую энергию направленного движения струи пара. Струя пара поступает из сопла на лопасти турбины и передаёт им часть своей кинетической энергии, приводя турбину во вращение. Обычно турбины имеют несколько дисков, каждому из которых передаётся часть энергии пара. Вращение диска передаётся валу, с которым соединён генератор электрического тока.

Удельная теплота сгорания топлива

При сгорании различного топлива одинаковой массы выделяется разное количество теплоты. Например, хорошо известно, что природный газ является энергетически более выгодным топливом, чем дрова. Это значит, что для получения одного и того же количества теплоты, масса дров, которые нужно сжечь, должна быть существенно больше массы природного газа. Следовательно, различные виды топлива с энергетической точки зрения характеризуются величиной, называемой удельной теплотой сгорания топлива .

Удельная теплота сгорания топлива — физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг.

Удельная теплота сгорания обозначается буквой q, её единицей является 1 Дж/кг.

Значение удельной теплоты определяют экспериментально. Наибольшую удельную теплоту сгорания имеет водород, наименьшую — порох.

Удельная теплота сгорания нефти — 4,4*10 7 Дж/кг. Это означает, что при полном сгорании 1 кг нефти выделяется количество теплоты 4,4*10 7 Дж. В общем случае, если масса топлива равна m, то количество теплоты Q, выделяющееся при его полном сгорании, равно произведению удельной теплоты сгорания топлива q на его массу:

Q = qm.

Конспект урока по физике в 8 классе «Тепловые машины. ДВС. Удельная теплота сгорания».


источники:

http://autolirika.ru/teoriya/teplovoj-balans-dvigatelya.html

http://uchitel.pro/%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%B2%D1%8B%D0%B5-%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D1%8B/